Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #22 Feb 02 2021 22:42:43
%S 1,3,9,35,137,547,2185,8739,34953,139811,559241,2236963,8947849,
%T 35791395,143165577,572662307,2290649225,9162596899,36650387593,
%U 146601550371,586406201481,2345624805923,9382499223689,37529996894755,150119987579017,600479950316067
%N Base-4 digits are, in order, the first n terms of the sequence (1, 3, 21, 203, 2021, 20203, 202021, 2020203, 20202021, 202020203, ... ).
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (4,1,-4).
%F 4^n = a(n) + A037576(n) for n >= 1.
%F a(n) + a(n+1) = A039301(n+2).
%F a(n) = 4*a(n-1) + a(n-2) - 4*a(n-3). - _Harvey P. Dale_, Mar 23 2012
%F G.f.: 1 + x*(3-3*x-4*x^2)/((1-x)*(1+x)*(1-4*x)). - _Colin Barker_, Aug 28 2012
%t FromDigits[IntegerDigits[#],4]&/@(NestList[FromDigits[Flatten[ IntegerDigits[#]/.{3->{2,1},1->{0,3}}]]&,1,30]) (* or *) LinearRecurrence[{4,1,-4},{1,3,9},31](* _Harvey P. Dale_, Mar 23 2012 *)
%Y Cf. A037576.
%K base,easy,nonn
%O 0,2
%A _Creighton Dement_, Mar 01 2005
%E More terms from _Harvey P. Dale_, Mar 23 2012