|
|
A037576
|
|
Base-4 digits are, in order, the first n terms of the periodic sequence with initial period 1,3.
|
|
7
|
|
|
1, 7, 29, 119, 477, 1911, 7645, 30583, 122333, 489335, 1957341, 7829367, 31317469, 125269879, 501079517, 2004318071, 8017272285, 32069089143, 128276356573, 513105426295, 2052421705181, 8209686820727, 32838747282909
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
|
|
LINKS
|
Eric Weisstein's World of Mathematics, Rule 190
|
|
FORMULA
|
a(n) = 16*a(n-2) - 3*(-1)^n + 10, assuming that a(0) = 0.
a(n) = 4*a(n-1) + 2 + (-1)^n.
a(n) = 5*a(n-1) - 4*a(n-2) + 2*(-1)^n, n > 2. (End)
|
|
MATHEMATICA
|
CoefficientList[Series[(1+3*x)/((x-1)*(4*x-1)*(1+x)), {x, 0, 30}], x] (*or*) LinearRecurrence[{4, 1, -4}, {1, 7, 29}, 40] (* Vincenzo Librandi, Jun 22 2012 *)
|
|
PROG
|
(Magma) I:=[1, 7, 29]; [n le 3 select I[n] else 4*Self(n-1)+Self(n-2)-4*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Jun 22 2012
(PARI) my(x='x+O('x^99)); Vec(x*(1+3*x)/((1-x)*(1-4*x)*(1+x))) \\ Altug Alkan, Sep 21 2018
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,base,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|