login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A037576 Base-4 digits are, in order, the first n terms of the periodic sequence with initial period 1,3. 7
1, 7, 29, 119, 477, 1911, 7645, 30583, 122333, 489335, 1957341, 7829367, 31317469, 125269879, 501079517, 2004318071, 8017272285, 32069089143, 128276356573, 513105426295, 2052421705181, 8209686820727, 32838747282909 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
Partial sums of A255465. - Klaus Purath, Mar 18 2021
LINKS
Eric Weisstein's World of Mathematics, Rule 190
FORMULA
G.f.: x*(1+3*x)/((1-x)*(1-4*x)*(1+x)). - Vincenzo Librandi, Jun 22 2012
a(n) = 4*a(n-1) + a(n-2) - 4*a(n-3). - Vincenzo Librandi, Jun 22 2012
a(n) = (7*4^n + 3*(-1)^n - 10)/15. - Bruno Berselli, Jun 22 2012, corrected by Klaus Purath, Mar 18 2021.
a(n) = floor(7*4^n/15). - Karl V. Keller, Jr., Mar 09 2021
From Klaus Purath, Mar 18 2021: (Start)
a(n) = 16*a(n-2) - 3*(-1)^n + 10, assuming that a(0) = 0.
a(n) = 4*a(n-1) + 2 + (-1)^n.
a(n) = 5*a(n-1) - 4*a(n-2) + 2*(-1)^n, n > 2. (End)
MATHEMATICA
CoefficientList[Series[(1+3*x)/((x-1)*(4*x-1)*(1+x)), {x, 0, 30}], x] (*or*) LinearRecurrence[{4, 1, -4}, {1, 7, 29}, 40] (* Vincenzo Librandi, Jun 22 2012 *)
PROG
(Magma) I:=[1, 7, 29]; [n le 3 select I[n] else 4*Self(n-1)+Self(n-2)-4*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Jun 22 2012
(PARI) my(x='x+O('x^99)); Vec(x*(1+3*x)/((1-x)*(1-4*x)*(1+x))) \\ Altug Alkan, Sep 21 2018
(Python) print([7*4**n//15 for n in range(1, 30)]) # Karl V. Keller, Jr., Mar 09 2021
CROSSREFS
Cf. A007090 (numbers in base 4), A037582 (decimal), A265688 (binary), A118111.
Sequence in context: A118171 A072261 A066744 * A327587 A055427 A048876
KEYWORD
nonn,base,easy
AUTHOR
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 7 22:13 EDT 2024. Contains 375749 sequences. (Running on oeis4.)