OFFSET
0,2
COMMENTS
A bisection of A016742. Sequence arises from reading the line from 0, in the direction 0, 16, ... in the square spiral whose vertices are the squares A000290. - Omar E. Pol, May 24 2008
Also, sequence found by reading the line from 0, in the direction 0, 16, ... in the square spiral whose vertices are the generalized decagonal numbers A074377. - Omar E. Pol, Sep 10 2011
LINKS
Karl-Heinz Hofmann, Table of n, a(n) for n = 0..10000 (first 200 terms from Ivan Panchenko).
Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
FORMULA
a(n) = 16*n^2 = 16*A000290(n). - Omar E. Pol, Dec 11 2008
a(n) = a(n-1) + 16*(2*n-1) (with a(0)=0). - Vincenzo Librandi, Nov 20 2010
From Amiram Eldar, Jan 25 2021: (Start)
Sum_{n>=1} 1/a(n) = Pi^2/96.
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^2/192.
Product_{n>=1} (1 + 1/a(n)) = sinh(Pi/4)/(Pi/4).
Product_{n>=1} (1 - 1/a(n)) = sin(Pi/4)/(Pi/4) = 2*sqrt(2)/Pi (A112628). (End)
From Elmo R. Oliveira, Nov 30 2024: (Start)
G.f.: 16*x*(1 + x)/(1-x)^3.
E.g.f.: 16*x*(1 + x)*exp(x).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)
PROG
(PARI) a(n) = (4*n)^2; \\ Michel Marcus, Mar 04 2014
(Python)
def A016802(n): return (4*n)**2 # Karl-Heinz Hofmann, Sep 11 2024
CROSSREFS
KEYWORD
nonn,easy,changed
AUTHOR
STATUS
approved