login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A016802
a(n) = (4*n)^2.
22
0, 16, 64, 144, 256, 400, 576, 784, 1024, 1296, 1600, 1936, 2304, 2704, 3136, 3600, 4096, 4624, 5184, 5776, 6400, 7056, 7744, 8464, 9216, 10000, 10816, 11664, 12544, 13456, 14400, 15376, 16384, 17424, 18496, 19600, 20736, 21904, 23104, 24336, 25600, 26896, 28224
OFFSET
0,2
COMMENTS
A bisection of A016742. Sequence arises from reading the line from 0, in the direction 0, 16, ... in the square spiral whose vertices are the squares A000290. - Omar E. Pol, May 24 2008
Also, sequence found by reading the line from 0, in the direction 0, 16, ... in the square spiral whose vertices are the generalized decagonal numbers A074377. - Omar E. Pol, Sep 10 2011
LINKS
Karl-Heinz Hofmann, Table of n, a(n) for n = 0..10000 (first 200 terms from Ivan Panchenko).
FORMULA
a(n) = 16*n^2 = 16*A000290(n). - Omar E. Pol, Dec 11 2008
a(n) = 8*A001105(n) = 4*A016742(n) = 2*A139098(n). - Omar E. Pol, Dec 13 2008
a(n) = a(n-1) + 16*(2*n-1) (with a(0)=0). - Vincenzo Librandi, Nov 20 2010
From Amiram Eldar, Jan 25 2021: (Start)
Sum_{n>=1} 1/a(n) = Pi^2/96.
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^2/192.
Product_{n>=1} (1 + 1/a(n)) = sinh(Pi/4)/(Pi/4).
Product_{n>=1} (1 - 1/a(n)) = sin(Pi/4)/(Pi/4) = 2*sqrt(2)/Pi (A112628). (End)
From Elmo R. Oliveira, Nov 30 2024: (Start)
G.f.: 16*x*(1 + x)/(1-x)^3.
E.g.f.: 16*x*(1 + x)*exp(x).
a(n) = n*A008598(n) = A195146(2*n).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)
PROG
(PARI) a(n) = (4*n)^2; \\ Michel Marcus, Mar 04 2014
(Python)
def A016802(n): return (4*n)**2 # Karl-Heinz Hofmann, Sep 11 2024
KEYWORD
nonn,easy,changed
STATUS
approved