OFFSET
0,3
COMMENTS
Concentric hexadecagonal numbers or concentric hexakaidecagonal numbers.
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..10000
Index entries for linear recurrences with constant coefficients, signature (2,0,-2,1).
FORMULA
From Vincenzo Librandi, Sep 27 2011: (Start)
a(n) = (8*n^2 + 3*(-1)^n - 3)/2;
a(n) = -a(n-1) + 8*n^2 - 8*n + 1. (End)
G.f. -x*(1+14*x+x^2) / ( (1+x)*(x-1)^3 ). - R. J. Mathar, Sep 18 2011
Sum_{n>=1} 1/a(n) = Pi^2/96 + tan(sqrt(3)*Pi/4)*Pi/(8*sqrt(3)). - Amiram Eldar, Jan 16 2023
MATHEMATICA
LinearRecurrence[{2, 0, -2, 1}, {0, 1, 16, 33}, 50] (* Amiram Eldar, Jan 16 2023 *)
PROG
(Magma) [(8*n^2+3*(-1)^n-3)/2: n in [0..50]]; // Vincenzo Librandi, Sep 27 2011
(PARI) a(n)=(8*n^2+3*(-1)^n-3)/2 \\ Charles R Greathouse IV, Oct 07 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Omar E. Pol, Sep 17 2011
STATUS
approved