login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of ways to change three non-identical letters in the word aabbccdd..., where there are n types of letters.
14

%I #56 Sep 04 2022 04:05:04

%S 0,16,64,160,320,560,896,1344,1920,2640,3520,4576,5824,7280,8960,

%T 10880,13056,15504,18240,21280,24640,28336,32384,36800,41600,46800,

%U 52416,58464,64960,71920,79360,87296,95744,104720,114240,124320,134976,146224

%N Number of ways to change three non-identical letters in the word aabbccdd..., where there are n types of letters.

%C There are two ways to change abc: abc -> bca and abc -> cab, that's why we get 2*C(2n,3). There are 2n*(2n-2) = 4n*(n-1) = 8*C(n,2) cases when the two chosen letters are identical, that's why we get -8*C(n,2). Thanks to _Miklos Kristof_ for help.

%C A diagonal of A059056. - _Zerinvary Lajos_, Jun 18 2007

%C With offset "1", a(n) is 16 times the self convolution of n. - _Wesley Ivan Hurt_, Apr 06 2015

%C Number of orbits of Aut(Z^7) as function of the infinity norm (n+2) of the representative integer lattice point of the orbit, when the cardinality of the orbit is equal to 53760. - _Philippe A.J.G. Chevalier_, Dec 28 2015

%H Stefano Spezia, <a href="/A102860/b102860.txt">Table of n, a(n) for n = 2..10000</a>

%H Mark Roger Sepanski, <a href="https://doi.org/10.37236/3350">On Divisibility of Convolutions of Central Binomial Coefficients</a>, Electronic Journal of Combinatorics, 21 (1) 2014, Article P1.32.

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,-6,4,-1).

%F a(n) = 16*C(n, 3) = 2*C(2*n, 3) - 8*C(n, 2).

%F From _R. J. Mathar_, Mar 09 2009: (Start)

%F G.f.: 16*x^3/(1-x)^4.

%F a(n) = 4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4).

%F a(n) = 8*n*(n-1)*(n-2)/3. (End)

%F a(n) = 16*A000292(n-2). - _J. M. Bergot_, May 29 2014

%F E.g.f.: 8*exp(x)*x^3/3. - _Stefano Spezia_, May 19 2021

%F From _Amiram Eldar_, Sep 04 2022: (Start)

%F Sum_{n>=3} 1/a(n) = 3/32.

%F Sum_{n>=3} (-1)^(n+1)/a(n) = 3*(8*log(2)-5)/32. (End)

%e a(4) = 64 = 2*C(8,3) - 8*C(4,2) = 2*56 - 8*6 = 112 - 48.

%p A102860:=n->8*n*(n-1)*(n-2)/3: seq(A102860(n), n=2..50); # _Wesley Ivan Hurt_, Apr 06 2015

%t Table[8n(n-1)(n-2)/3,{n,2,50}] (* _Wesley Ivan Hurt_, Apr 06 2015 *)

%t LinearRecurrence[{4,-6,4,-1},{0,16,64,160},50] (* _Harvey P. Dale_, May 20 2021 *)

%o (Magma) [8*n*(n-1)*(n-2)/3 : n in [2..50]]; // _Wesley Ivan Hurt_, Apr 06 2015

%o (PARI) concat([0],Vec(16*x^3/(1-x)^4+O(x^40))) \\ _Stefano Spezia_, May 22 2021

%Y Cf. A000292, A046092, A059056.

%K easy,nonn

%O 2,2

%A _Zerinvary Lajos_, Mar 01 2005