The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A136261 Triangle T(n,k) = k*A122188(n,k), read by rows. 0
 -1, -1, 2, 1, 2, -3, -1, -2, -3, 4, 1, 2, 3, 4, -5, -1, -2, -3, -4, -5, 6, 1, 2, 3, 4, 5, 6, -7, -1, -2, -3, -4, -5, -6, -7, 8, 1, 2, 3, 4, 5, 6, 7, 8, -9, -1, -2, -3, -4, -5, -6, -7, -8, -9, 10, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, -11 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS Multiplication of the columns of A122188 by their index is equivalent to differentiation of the polynomials B(n,x) defined in A122188. Row sums are -1, 1, 0, -2, 5, -9, 14, -20, 27, -35, 44, ... =(-1)^n*A080956(n-1). LINKS FORMULA |T(n,k)| = A002260(n,k). EXAMPLE -1;   -1,  2;    1,  2, -3;   -1, -2, -3,  4;    1,  2,  3,  4, -5;   -1, -2, -3, -4, -5,  6;    1,  2,  3,  4,  5,  6, -7;   -1, -2, -3, -4, -5, -6, -7,  8;    1,  2,  3,  4,  5,  6,  7,  8, -9;   -1, -2, -3, -4, -5, -6, -7, -8, -9, 10;    1,  2,  3,  4,  5,  6,  7,  8,  9, 10, -11; MATHEMATICA Clear[B, x, n] B[x, 0] = 1; B[x, 1] = -x + 1; B[x_, n_] := B[x, n] = If[n > 1, (-1)^n*(x^n - Sum[x^m, {m, 0, n - 1}])]; P[x_, n_] := D[B[x, n + 1], x]; Table[ExpandAll[P[x, n]], {n, 0, 10}]; a = Table[CoefficientList[P[x, n], x], {n, 0, 10}]; Flatten[a] Table[Apply[Plus, CoefficientList[P[x, n], x]], {n, 0, 10}]; CROSSREFS Cf. A002260, A122188. Sequence in context: A348043 A138060 A023121 * A140756 A002260 A243732 Adjacent sequences:  A136258 A136259 A136260 * A136262 A136263 A136264 KEYWORD easy,tabl,sign AUTHOR Roger L. Bagula and Gary W. Adamson, Mar 18 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 1 08:17 EDT 2022. Contains 354953 sequences. (Running on oeis4.)