login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A140756
Count up to k sequence with alternating signs (k always positive).
3
1, -1, 2, 1, -2, 3, -1, 2, -3, 4, 1, -2, 3, -4, 5, -1, 2, -3, 4, -5, 6, 1, -2, 3, -4, 5, -6, 7, -1, 2, -3, 4, -5, 6, -7, 8, 1, -2, 3, -4, 5, -6, 7, -8, 9, -1, 2, -3, 4, -5, 6, -7, 8, -9, 10, 1, -2, 3, -4, 5, -6, 7, -8, 9, -10, 11, -1, 2, -3, 4, -5, 6, -7, 8, -9, 10, -11, 12, 1, -2, 3, -4, 5, -6, 7, -8, 9, -10, 11, -12, 13
OFFSET
1,3
COMMENTS
Row sums are A004526(n+1).
LINKS
FORMULA
Regarded as a triangle, T(n,k) = (-1)^{n-k} * k.
From Boris Putievskiy, Mar 14 2013: (Start)
a(n) = (-1)^(A004736(n) + 1) * A002260(n).
a(n) = (-1)^(j+1) * i, where i = n - t*(t+1)/2, j = (t^2 + 3*t + 4)/2 -n, and t = floor((-1 + sqrt(8*n-7))/2). (End)
EXAMPLE
Triangle begins:
1;
-1, 2;
1, -2, 3;
-1, 2, -3, 4;
1, -2, 3, -4, 5;
-1, 2, -3, 4, -5, 6;
MATHEMATICA
a[n_]:= With[{t=Floor[(-1+Sqrt[8*n-7])/2]}, (-1)^(Binomial[t+2, 2] -n)*(n-Binomial[t+1, 2])];
Table[a[n], {n, 100}] (* G. C. Greubel, Oct 21 2023 *)
PROG
(Magma) [(-1)^(n+k)*k: k in [1..n], n in [1..12]]; // G. C. Greubel, Oct 21 2023
(SageMath) flatten([[(-1)^(n+k)*k for k in range(1, n+1)] for n in range(1, 13)]) # G. C. Greubel, Oct 21 2023
CROSSREFS
KEYWORD
easy,sign,tabl
AUTHOR
STATUS
approved