|
|
A140756
|
|
Count up to k sequence with alternating signs (k always positive).
|
|
1
|
|
|
1, -1, 2, 1, -2, 3, -1, 2, -3, 4, 1, -2, 3, -4, 5, -1, 2, -3, 4, -5, 6, 1, -2, 3, -4, 5, -6, 7, -1, 2, -3, 4, -5, 6, -7, 8, 1, -2, 3, -4, 5, -6, 7, -8, 9, -1, 2, -3, 4, -5, 6, -7, 8, -9, 10, 1, -2, 3, -4, 5, -6, 7, -8, 9, -10, 11, -1, 2, -3, 4, -5, 6, -7, 8, -9, 10, -11, 12, 1, -2, 3, -4, 5, -6, 7, -8, 9, -10, 11, -12, 13
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,3
|
|
COMMENTS
|
Row sums are A004526(n+1).
|
|
LINKS
|
Table of n, a(n) for n=1..91.
|
|
FORMULA
|
Regarded as a triangle, T(n,k) = (-1)^{n-k} * k.
a(n)=A002260(n)*(-1)^(A004736(n)+1); a(n)=i*(-1)^(j+1), where i=n-t*(t+1)/2, j=(t*t+3*t+4)/2-n, t=floor((-1+sqrt(8*n-7))/2). - Boris Putievskiy, Mar 14 2013
|
|
EXAMPLE
|
Triangle begins:
1;
-1, 2;
1, -2, 3;
-1, 2, -3, 4;
1, -2, 3, -4, 5;
-1, 2, -3, 4, -5, 6;
|
|
CROSSREFS
|
Cf. A002260, A140757, A004736.
Sequence in context: A138060 A023121 A136261 * A002260 A243732 A194905
Adjacent sequences: A140753 A140754 A140755 * A140757 A140758 A140759
|
|
KEYWORD
|
easy,sign,tabl
|
|
AUTHOR
|
Franklin T. Adams-Watters, May 27 2008
|
|
STATUS
|
approved
|
|
|
|