login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A136263
Integral form based on A122188: Coefficients of recursive polynomial from: p(x,n)=x*IP(x,n)=-(1+x)*B(x,n)-B'(x,n).
0
1, 0, -1, 0, -2, 1, 0, 0, 3, -1, 0, 0, 1, -4, 1, 0, 0, -1, -2, 5, -1, 0, 0, 1, 2, 3, -6, 1, 0, 0, -1, -2, -3, -4, 7, -1, 0, 0, 1, 2, 3, 4, 5, -8, 1, 0, 0, -1, -2, -3, -4, -5, -6, 9, -1, 0, 0, 1, 2, 3, 4, 5, 6, 7, -10, 1, 0, 0, -1, -2, -3, -4, -5, -6, -7, -8, 11, -1
OFFSET
1,5
COMMENTS
Row sum:
{1, -1, -1, 2, -2, 1, 1, -4, 8, -13, 19, -26}
Derivation:
The Bonacci polynomial recursion:
B(x, n) = -(1 + x)*B(x, n - 1) - x*B(x, n - 2);
Implies the differential equation:
B''(x, n) = -(1 + x)*B'(x, n) - x*B(x, n);
Integration to a constant of that differential equation gives:
B'(x,n)=-(1+x)*B(x,n)-x*IB(x,n)
which rearranged gives the output form given here.
FORMULA
Bonacci polynomial recursion: B(x, n) = -(1 + x)*B(x, n - 1) - x*B(x, n - 2); Differentiation Polynomials: B'(x, n) := D[B[x, n + 1], x]=dB[x,n+1)/dx; Output form: p(x,n)=x*IP(x,n)=-(1+x)*B(x,n)-B'(x,n)
EXAMPLE
{1},
{0, -1},
{0, -2, 1},
{0, 0, 3, -1},
{0, 0, 1, -4, 1},
{0, 0, -1, -2, 5, -1},
{0, 0, 1, 2, 3, -6, 1},
{0, 0, -1, -2, -3, -4, 7, -1},
{0, 0, 1, 2, 3,4, 5, -8, 1},
{0, 0, -1, -2, -3, -4, -5, -6, 9, -1},
{0, 0, 1, 2, 3, 4,5, 6, 7, -10, 1},
{0, 0, -1, -2, -3, -4, -5, -6, -7, -8, 11, -1}
MATHEMATICA
Clear[B, x, n] B[x, 0] = 1; B[x, 1] = -1*x + 1; B[x_, n_] := B[x, n] = -(1 + x)*B[x, n - 1] - x*B[x, n - 2]; P[x_, n_] := D[B[x, n + 1], x]; Table[ExpandAll[ -(1 + x)*B[x, n] - P[x, n]], {n, 0, 10}]; a = Join[{{1}}, Table[CoefficientList[ -(1 + x)* B[x, n] - P[x, n], x], {n, 0, 10}]]; Flatten[a] Table[Apply[Plus, CoefficientList[ -(1 + x)*B[x, n] - P[x, n], x]], {n, 0, 10}];
CROSSREFS
Cf. A122188.
Sequence in context: A128229 A132013 A105820 * A105593 A029371 A114374
KEYWORD
uned,tabl,sign
AUTHOR
Roger L. Bagula, Mar 18 2008
STATUS
approved