login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A136267
Alternate terms of A001263 as polynomials divided by x+1 to give a new triangle of coefficients of even powered polynomials.
0
1, 1, 5, 1, 1, 14, 36, 14, 1, 1, 27, 169, 321, 169, 27, 1, 1, 44, 496, 2024, 3268, 2024, 496, 44, 1, 1, 65, 1145, 7930, 24740, 36244, 24740, 7930, 1145, 65, 1, 1, 90, 2276, 23750, 119393, 310036, 426128, 310036, 119393, 23750, 2276, 90, 1, 1, 119, 4081, 59619
OFFSET
1,3
COMMENTS
Row sums are:
Table[Apply[Plus, CoefficientList[Factor[a[[n]]]/(x + 1), x]], {n, 2, Length[a], 2}];
{1, 7, 66, 715, 8398, 104006, 1337220, 17678835, 238819350, 3282060210}.
This sequence was found while looking into Gary W. Adamson's comment on A001263.
FORMULA
T(n,m) = Binomial[n - 1, m - 1]*Binomial[n, m - 1]/m p(x,n)=Sum[t(n,m)^x^(m-1),{m,1,n}]/(x+1): {n,2,limit,skip one}
EXAMPLE
{1},
{1, 5, 1},
{1, 14, 36, 14, 1},
{1, 27, 169, 321, 169, 27, 1},
{1, 44, 496, 2024, 3268, 2024, 496, 44, 1},
{1, 65, 1145, 7930, 24740, 36244, 24740, 7930, 1145, 65, 1},
{1, 90, 2276, 23750, 119393, 310036, 426128, 310036, 119393, 23750, 2276, 90,1},
{1, 119, 4081, 59619, 437241, 1748943, 3976777, 5225273, 3976777, 1748943,437241, 59619, 4081, 119, 1},
{1, 152, 6784, 131936, 1324624, 7511840, 25309312, 52054832, 66140388, 52054832, 25309312, 7511840, 1324624, 131936, 6784, 152, 1},
{1, 189, 10641, 265524, 3490320, 26556432, 123677328, 364582392, 693313668, 858267220, 693313668, 364582392, 123677328, 26556432, 3490320, 265524, 10641, 189, 1}
MATHEMATICA
T[n_, m_] := Binomial[n - 1, m - 1]*Binomial[n, m - 1]/m; a = Table[Apply[Plus, Table[T[n, m]*x^(m - 1), {m, 1, n}]], {n, 1, 20}]; Table[Factor[a[[n]]]/(x + 1), {n, 2, Length[a], 2}]; b = Table[CoefficientList[Factor[a[[n]]]/(x + 1), x], {n, 2, Length[a], 2}]; Flatten[b]
CROSSREFS
Cf. A001263.
Sequence in context: A144438 A157207 A008957 * A109960 A196019 A056940
KEYWORD
nonn,uned,tabf
AUTHOR
STATUS
approved