%I #21 Feb 23 2017 22:15:56
%S -8,-18,-8,318,3352,26142,183112,1216638,7842232,49591902,309595432,
%T 1915328958,11771279512,71987413662,438579282952,2664183937278,
%U 16146410851192,97676152243422,590010212989672,3559688008961598,21455704973213272,129219894479953182,777738831202779592
%N a(n) = 6^n - 5^n - 4^n - 3^n - 2^n.
%H G. C. Greubel, <a href="/A137788/b137788.txt">Table of n, a(n) for n = 1..1000</a>
%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (20,-155,580,-1044,720).
%F From _R. J. Mathar_, Jun 15 2009: (Start)
%F G.f.: 2*x*(4 - 71*x + 444*x^2 - 1164*x^3 + 1080*x^4)/((6*x-1)*(4*x-1)*(3*x-1)*(2*x-1)*(5*x-1)).
%F a(n) = 20*a(n-1) - 155*a(n-2) + 580*a(n-3) - 1044*a(n-4) + 720*a(n-5). (End)
%e - 8*x - 18*x^2 - 8*x^3 + 318*x^4 + 3352*x^5 + 26142*x^6 + 183112*x^7 + ...
%p a:=proc (n) options operator, arrow: 6^n-5^n-4^n-3^n-2^n end proc: seq(a(n), n =1..20); # _Emeric Deutsch_, May 25 2008
%t Array[6^#-5^#-4^#-3^#-2^# &, 10]
%t LinearRecurrence[{20,-155,580,-1044,720},{-8,-18,-8,318,3352},30] (* _Harvey P. Dale_, Jan 23 2012 *)
%o (PARI) {a(n) = 6^n - 5^n - 4^n - 3^n - 2^n} /* _Michael Somos_, Jan 06 2012 */
%K sign,easy
%O 1,1
%A _Vladimir Joseph Stephan Orlovsky_, Apr 28 2008
%E More terms from _Alexander R. Povolotsky_ and _Emeric Deutsch_, May 01 2008