login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A225171
Triangle read by rows: T(n,k), 1 <= k <= n, is the number of non-degenerate fanout-free Boolean functions of n variables having AND rank k.
4
2, 4, 4, 32, 24, 8, 416, 304, 96, 16, 7552, 5440, 1760, 320, 32, 176128, 125824, 41280, 8000, 960, 64, 5018624, 3566080, 1180928, 237440, 31360, 2688, 128, 168968192, 119614464, 39875584, 8212736, 1146880, 111104, 7168, 256
OFFSET
1,1
COMMENTS
Also the Bell transform of A225170. For the definition of the Bell transform see A264428. - Peter Luschny, Jan 29 2016
FORMULA
Hayes (1976, Theorem 3) gives a recurrence.
EXAMPLE
Triangle begins
2,
4,4,
32,24,8,
416,304,96,16,
7552,5440,1760,320,32,
176128,125824,41280,8000,960,64,
5018624,3566080,1180928,237440,31360,2688,128,
168968192,119614464,39875584,8212736,1146880,111104,7168,256,
...
MAPLE
# Function BellMatrix defined in A264428.
BellMatrix(n -> `if`(n=0, 2, add(combinat:-eulerian2(n, k)*2^(2*n-k), k=0..n)), 9); # Peter Luschny, Jan 29 2016
MATHEMATICA
BellMatrix[f_Function, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];
rows = 12;
M = BellMatrix[If[# == 0, 2, Sum[(#+k)!*Sum[(-1)^j/(k-j)!*Sum[(-1)^i*2^(# - i + j)*StirlingS1[# - i + j, j - i]/((# - i + j)!*i!), {i, 0, j}], {j, 1, k}], {k, 1, #}]]&, rows];
Table[M[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* Jean-François Alcover, Jun 24 2018, after Peter Luschny *)
CROSSREFS
Columns give A225170 (or A005172), A005756, A224767, A224768.
Sequence in context: A371373 A092524 A137787 * A320600 A360685 A290606
KEYWORD
nonn,tabl
AUTHOR
N. J. A. Sloane, Apr 30 2013
STATUS
approved