login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A225169
Denominators of the sequence s(n) of the sum resp. product of fractions f(n) defined recursively by f(1) = 10/1; f(n+1) is chosen so that the sum and the product of the first n terms of the sequence are equal.
2
1, 9, 819, 7519239, 695384944860879, 6470289227069622272847335347359, 605164280025029017271801950447677089988237937249820002811725119
OFFSET
1,2
COMMENTS
Numerators of the sequence s(n) of the sum resp. product of fractions f(n) is A165428(n+2), hence sum(A165428(i+1)/A225162(i),i=1..n) = product(A165428(i+1)/A225162(i),i=1..n) = A165428(n+2)/a(n) = A220812(n-1)/a(n).
FORMULA
a(n) = 10^(2^(n-1))*b(n) where b(n)=b(n-1)-b(n-1)^2 with b(1)=1/10.
EXAMPLE
f(n) = 10, 10/9, 100/91, 10000/9181, ...
10 + 10/9 = 10 * 10/9 = 100/9; 10 + 10/9 + 100/91 = 10 * 10/9 * 100/91 = 10000/819; ...
s(n) = 1/b(n) = 10, 100/9, 10000/819, ...
MAPLE
b:=proc(n) option remember; b(n-1)-b(n-1)^2; end:
b(1):=1/10;
a:=n->10^(2^(n-1))*b(n);
seq(a(i), i=1..7);
CROSSREFS
KEYWORD
nonn
AUTHOR
Martin Renner, Apr 30 2013
STATUS
approved