OFFSET
0,3
FORMULA
a(n) = Sum_{k=0..floor(n/2)} (n-k)^(2*k) * binomial(n-k,k).
a(n) ~ (exp(exp(1)) + (-1)^n * exp(-exp(1))) * n^n / 2^(n+1). - Vaclav Kotesovec, Feb 16 2023
MATHEMATICA
Flatten[{1, Table[Sum[Binomial[n-k, k] * (n-k)^(2*k), {k, 0, n}], {n, 1, 30}]}] (* Vaclav Kotesovec, Feb 16 2023 *)
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(sum(k=0, N, (x*(1+k^2*x))^k))
(PARI) a(n) = sum(k=0, n\2, (n-k)^(2*k)*binomial(n-k, k));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Feb 16 2023
STATUS
approved