login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A336400
The hafnian of a symmetric Toeplitz matrix of order 2*n, n>=2 with the first row (0,2,1,...,1,2); a(0)=1, a(1)=2.
12
1, 2, 9, 44, 303, 2697, 29438, 380529, 5683359, 96290588, 1824544857, 38229811083, 877643031554, 21906313145979, 590665804363833, 17109084307014332, 529833078045763263, 17468521692479218209, 610901505126064857854, 22586913755160674065113
OFFSET
0,2
COMMENTS
Number of perfect matchings of a chord diagram with 2*n vertices, where neighboring vertices are joined by two chords, and any other pair of vertices is joined by one chord.
FORMULA
a(n) = n*Sum_{k=0..n} (n+k-1)!/(k!*(n-k)!*2^(k-1)), n>=2.
a(n) = A001515(n) + A001515(n-1), n>=2.
a(n) ~ (2*n)!*e/(n!*2^n).
a(n) = 2^(n+1)*U(n, 1+2*n, 2) for n >= 2, where U(a, b, c) is the confluent hypergeometric function. - Stefano Spezia, Jul 22 2020
a(n) = ((22*n^2-74*n+43)*a(n-1) + (10*n^2-54*n+77)*a(n-2) + 5*(n-4)*a(n-3)) / (11*n-29) for n >= 3. - Alois P. Heinz, Jul 28 2020
E.g.f.: - 1 - x + (1 + 1/sqrt(1-2*x))*exp(1 - sqrt(1-2* x)). - G. C. Greubel, Sep 28 2023
EXAMPLE
A symmetric 4x4 Toeplitz matrix A with the first row (0,2,1,2) has the form:
0 2 1 2
2 0 2 1
1 2 0 2
2 1 2 0.
Its hafnian equals Hf(A)=a12*a34+a13*a24+a14*a23=2*2+1*1+2*2=9.
MAPLE
a:= proc(n) option remember; `if`(n<3, [1, 2, 9][n+1],
((22*n^2-74*n+43)*a(n-1)+(10*n^2-54*n+77)*a(n-2)
+5*(n-4)*a(n-3))/(11*n-29))
end:
seq(a(n), n=0..22); # Alois P. Heinz, Jul 28 2020
MATHEMATICA
Join[{1, 2}, Table[2^(n+1)*HypergeometricU[n, 1+2 n, 2], {n, 2, 19}]] (* Stefano Spezia, Jul 22 2020 *)
(* or *) Join[{1, 2}, Table[n*Sum[(n+k-1)!/(k!*(n-k)!*2^(k-1)), {k, 0, n}], {n, 2, 200}]] (* Georg Fischer, Jul 28 2020 *)
PROG
(Magma) I:=[1, 2, 9]; [n le 3 select I[n] else ( (22*n^2-118*n+139)*Self(n-1) + (10*n^2-74*n+141)*Self(n-2) + 5*(n-5)*Self(n-3) )/(11*n-40): n in [1..30]]; // G. C. Greubel, Sep 28 2023
(SageMath)
def A336400(n): return n+1 if n<2 else (2/factorial(n-1))*sum(binomial(n, k)*gamma(n+k)/2^k for k in range(n+1))
[A336400(n) for n in range(31)] # G. C. Greubel, Sep 28 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Dmitry Efimov, Jul 22 2020
EXTENSIONS
Incorrect recurrences removed and a(18) corrected by Georg Fischer, Jul 28 2020
STATUS
approved