OFFSET
0,3
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..200
FORMULA
E.g.f.: exp( Sum_{n>=1} x^n * Sum_{k=1..n} -(-1)^k/k ). - Paul D. Hanna, Jan 08 2014
E.g.f.: exp( Sum_{n>=1} x^n * ((1-x^n)/(1-x)) / n ). - Paul D. Hanna, Nov 24 2024
a(n) ~ (log(2))^(1/4) * exp(2*sqrt(n*log(2)) - n - 1/2) * n^(n-1/4). - Vaclav Kotesovec, Apr 21 2014
EXAMPLE
E.g.f.: (1+x)^(1/(1-x)) = 1 + x + 2*x^2/2! + 9*x^3/3! + 44*x^4/4! + 290*x^5/5! + 2154*x^6/6! + 19026*x^7/7! + 186752*x^8/8! + 2070792*x^9/9! + ...
which may be written as
(1+x)^(1/(1-x)) = exp(x + x^2*(1+x)/2 + x^3*(1+x+x^2)/3 + x^4*(1+x+x^2+x^3)/4 + x^5*(1+x+x^2+x^3+x^4)/5 + ... + x^n*((1-x^n)/(1-x))/n + ...).
MATHEMATICA
CoefficientList[Series[(1+x)^(1/(1-x)), {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Apr 21 2014 *)
PROG
(PARI) {a(n)=n!*polcoeff((1+x +x*O(x^n))^(1/(1-x)), n)} \\ Paul D. Hanna, Jan 08 2014
(PARI) {a(n)=local(A); A=exp(sum(m=1, n, sum(k=1, m, -(-1)^k/k)*x^m)+x*O(x^n)); n!*polcoeff(A, n)} \\ Paul D. Hanna, Jan 08 2014
CROSSREFS
KEYWORD
nonn
AUTHOR
Vladeta Jovovic, Aug 26 2002
EXTENSIONS
More terms from Robert G. Wilson v, Aug 28 2002
STATUS
approved