login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A073478
Expansion of (1+x)^(1/(1-x)).
2
1, 1, 2, 9, 44, 290, 2154, 19026, 186752, 2070792, 25119720, 334960560, 4824346152, 75100568088, 1250180063664, 22235660291880, 419595248663040, 8388866239417920, 176823515257447104, 3923498370610292544
OFFSET
0,3
LINKS
FORMULA
E.g.f.: exp( Sum_{n>=1} x^n * Sum_{k=1..n} -(-1)^k/k ). - Paul D. Hanna, Jan 08 2014
E.g.f.: exp( Sum_{n>=1} x^n * ((1-x^n)/(1-x)) / n ). - Paul D. Hanna, Nov 24 2024
a(n) ~ (log(2))^(1/4) * exp(2*sqrt(n*log(2)) - n - 1/2) * n^(n-1/4). - Vaclav Kotesovec, Apr 21 2014
EXAMPLE
E.g.f.: (1+x)^(1/(1-x)) = 1 + x + 2*x^2/2! + 9*x^3/3! + 44*x^4/4! + 290*x^5/5! + 2154*x^6/6! + 19026*x^7/7! + 186752*x^8/8! + 2070792*x^9/9! + ...
which may be written as
(1+x)^(1/(1-x)) = exp(x + x^2*(1+x)/2 + x^3*(1+x+x^2)/3 + x^4*(1+x+x^2+x^3)/4 + x^5*(1+x+x^2+x^3+x^4)/5 + ... + x^n*((1-x^n)/(1-x))/n + ...).
MATHEMATICA
CoefficientList[Series[(1+x)^(1/(1-x)), {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Apr 21 2014 *)
PROG
(PARI) {a(n)=n!*polcoeff((1+x +x*O(x^n))^(1/(1-x)), n)} \\ Paul D. Hanna, Jan 08 2014
(PARI) {a(n)=local(A); A=exp(sum(m=1, n, sum(k=1, m, -(-1)^k/k)*x^m)+x*O(x^n)); n!*polcoeff(A, n)} \\ Paul D. Hanna, Jan 08 2014
CROSSREFS
KEYWORD
nonn
AUTHOR
Vladeta Jovovic, Aug 26 2002
EXTENSIONS
More terms from Robert G. Wilson v, Aug 28 2002
STATUS
approved