login
A073481
Least prime factor of the n-th squarefree number.
8
1, 2, 3, 5, 2, 7, 2, 11, 13, 2, 3, 17, 19, 3, 2, 23, 2, 29, 2, 31, 3, 2, 5, 37, 2, 3, 41, 2, 43, 2, 47, 3, 53, 5, 3, 2, 59, 61, 2, 5, 2, 67, 3, 2, 71, 73, 2, 7, 2, 79, 2, 83, 5, 2, 3, 89, 7, 3, 2, 5, 97, 101, 2, 103, 3, 2, 107, 109, 2, 3, 113, 2, 5, 2, 7, 2, 3, 127, 3, 2, 131, 7, 2, 137, 2, 139, 3, 2, 11, 5
OFFSET
1,2
LINKS
FORMULA
a(n) = A020639(A005117(n)).
a(n) = A265668(n,1). - Reinhard Zumkeller, Dec 13 2015
MATHEMATICA
a = Select[Range[300], SquareFreeQ[#]&]; Table[FactorInteger[a[[n]]][[1, 1]], {n, Length[a]}] (* Vladimir Joseph Stephan Orlovsky, Jan 30 2012 *)
PROG
(Haskell)
a073482 = a020639 . a005117 -- Reinhard Zumkeller, Feb 04 2012
(PARI) apply(x->(if (x==1, 1, vecmin(factor(x)[, 1]))), select(issquarefree, [1..150])) \\ Michel Marcus, Dec 17 2023
(Python)
from math import isqrt
from sympy import mobius, primefactors
def A073481(n):
def f(x): return n+x-sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1))
kmin, kmax = 0, 1
while f(kmax) > kmax:
kmax <<= 1
while kmax-kmin > 1:
kmid = kmax+kmin>>1
if f(kmid) <= kmid:
kmax = kmid
else:
kmin = kmid
return min(primefactors(kmax), default=1) # Chai Wah Wu, Aug 28 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Aug 03 2002
EXTENSIONS
More terms from Jason Earls, Aug 06 2002
STATUS
approved