login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A073479
Expansion of e.g.f.: (1-x)^(-1-x).
2
1, 1, 4, 15, 80, 490, 3534, 28938, 266048, 2710440, 30311640, 369127440, 4862219592, 68881435896, 1044331262688, 16872336545400, 289380447338880, 5251237965683520, 100519388543098944, 2024241909160239936, 42780009017657888640, 946724781741392908800
OFFSET
0,3
LINKS
FORMULA
(1-x)^(-1-x) = Sum_{n>=0} (Product_{k=1..n} (k+x)) * x^n/n!. [Paul D. Hanna, Nov 01 2010]
E.g.f.: (1-x)^(-1-x) = 1+(x*(1+x))/(Q(0)-x*(1+x)); Q(k)=(1+x)*k+1+x+(x^2)-x*(k+1)*(k+2+x)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Nov 27 2011
E.g.f.: 1 + x*(Q(0) - 1)/(x-1) where Q(k) = 1 - (1+x/(k+1))/(1 - x/(x - 1/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Mar 05 2013
a(n) ~ n! * (n - log(n) + 1 - gamma), where gamma is Euler-Mascheroni constant (A001620). - Vaclav Kotesovec, Sep 29 2013
E.g.f.: exp( x + Sum_{n>=2} (2*n-1) * x^n / (n*(n-1)) ). - Paul D. Hanna, Sep 27 2014
EXAMPLE
E.g.f.: A(x) = 1 + x + 4*x^2/2! + 15*x^3/3! + 80*x^4/4! + 490*x^5/5! +...
Explicit expressions for the e.g.f.:
(1-x)^(-1-x) = 1 + (1+x)*x + (1+x)(2+x)*x^2/2! + (1+x)(2+x)(3+x)*x^3/3! +... - Paul D. Hanna, Nov 01 2010
(1-x)^(-1-x) = exp(x + 3*x^2/2 + 5*x^3/6 + 7*x^4/12 + 9*x^5/20 + 11*x^6/30 +...). - Paul D. Hanna, Sep 27 2014
MAPLE
S:= series((1-x)^(-1-x), x, 51):
seq(coeff(S, x, j)*j!, j=0..50); # Robert Israel, Apr 20 2017
MATHEMATICA
CoefficientList[ Series[(1 - x)^(-1 - x), {x, 0, 19}], x]*Table[(n - 1)!, {n, 1, 20}]
PROG
(PARI) {a(n)=n!*polcoeff(sum(m=0, n, prod(k=1, m, k+x)*x^m/m!)+x*O(x^n), n)} \\ Paul D. Hanna, Nov 01 2010
(PARI) {a(n)=n!*polcoeff((1-x+x*O(x^n))^(-1-x), n)} \\ Paul D. Hanna, Nov 01 2010
(Magma) m:=25; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!((1-x)^(-1-x) )); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Aug 30 2018
CROSSREFS
Sequence in context: A090376 A232042 A125307 * A147690 A350830 A068313
KEYWORD
nonn
AUTHOR
Vladeta Jovovic, Aug 26 2002
STATUS
approved