login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A357682 a(n) = Sum_{k=0..floor(n/2)} n^k * Stirling2(n,2*k). 3
1, 0, 2, 9, 44, 325, 2742, 24794, 250168, 2796795, 33842610, 439337085, 6100179780, 90139379928, 1409779442190, 23242554452745, 402652762232048, 7308371248274949, 138605556986785674, 2740167375732394378, 56350604098768558140, 1203156656491936711635 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
LINKS
Eric Weisstein's World of Mathematics, Bell Polynomial.
FORMULA
a(n) = n! * [x^n] cosh( sqrt(n) * (exp(x) - 1) ).
a(n) = ( Bell_n(sqrt(n)) + Bell_n(-sqrt(n)) )/2, where Bell_n(x) is n-th Bell polynomial.
PROG
(PARI) a(n) = sum(k=0, n\2, n^k*stirling(n, 2*k, 2));
(PARI) a(n) = round(n!*polcoef(cosh(sqrt(n)*(exp(x+x*O(x^n))-1)), n));
(PARI) Bell_poly(n, x) = exp(-x)*suminf(k=0, k^n*x^k/k!);
a(n) = round((Bell_poly(n, sqrt(n))+Bell_poly(n, -sqrt(n))))/2;
CROSSREFS
Main diagonal of A357681.
Sequence in context: A073478 A336400 A360684 * A322613 A318913 A327940
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Oct 09 2022
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 17 07:13 EDT 2024. Contains 371756 sequences. (Running on oeis4.)