login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A357680
a(n) is the number of primes that can be written as +-1! +- 2! +- 3! +- ... +- n!.
1
0, 1, 3, 4, 7, 11, 16, 29, 42, 72, 121, 191, 367, 693, 1215, 2221, 4116, 7577, 13900, 25634, 48322, 90046, 169016, 317819, 600982, 1138049, 2158939, 4103414, 7818761, 14923641, 28534404, 54624906, 104786140, 201233500, 386914300, 744876280, 1435592207
OFFSET
1,3
EXAMPLE
For n=4, a(4)=4 means there exist 4 solutions ([17, 19, 29, 31]) as follows:
17 = 1! - 2! - 3! + 4!;
19 = -1! + 2! - 3! + 4!;
29 = 1! - 2! + 3! + 4!;
31 = -1! + 2! + 3! + 4!.
PROG
(Python)
from sympy import isprime, factorial
def A357680(nmax):
a=[0]
t=[1]
for n in range(2, nmax+1):
k=factorial(n)
s=[]
for j in t:
s.append(k-j)
s.append(k+j)
a.append(sum(1 for p in s if isprime(p)))
t=s
return(a)
print(A357680(21))
(Python)
from sympy import isprime
from math import factorial
from itertools import product
def a(n):
f = [2*factorial(i) for i in range(1, n+1)]
t = sum(f)//2
return sum(1 for s in product([0, 1], repeat=n-1) if isprime(t-sum(f[i] for i in range(n-1) if s[i])))
print([a(n) for n in range(1, 20)]) # Michael S. Branicky, Oct 15 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhining Yang, Oct 09 2022
EXTENSIONS
a(28)-a(30) from Michael S. Branicky, Oct 09 2022
a(31)-a(32) from Michael S. Branicky, Oct 10 2022
a(33)-a(34) from Michael S. Branicky, Oct 13 2022
a(35)-a(36) from Michael S. Branicky, Oct 26 2022
a(37) from Michael S. Branicky, Nov 13 2022
STATUS
approved