login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A089359
Primes which can be partitioned into distinct factorials. 0! and 1! are not considered distinct.
5
2, 3, 7, 31, 127, 151, 727, 751, 5167, 5791, 5881, 40351, 40471, 41047, 41161, 45361, 45481, 362911, 363751, 368047, 368647, 368791, 403327, 403951, 408241, 408271, 408361, 409081, 3628927, 3629671, 3633991, 3634591, 3669241, 3669847, 3669961
OFFSET
1,1
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..16812 (first 1000 terms from Seiichi Manyama)
EXAMPLE
From Seiichi Manyama, Mar 24 2018: (Start)
n | a(n) |
--+------+------------------
1 | 2 | 2!
2 | 3 | 2! + 1!
3 | 7 | 3! + 1!
4 | 31 | 4! + 3! + 1!
5 | 127 | 5! + 3! + 1!
6 | 151 | 5! + 4! + 3! + 1! (End)
PROG
(Python)
from sympy import isprime
def facbase(k, f):
return sum(f[i] for i, bi in enumerate(bin(k)[2:][::-1]) if bi == "1")
def auptoN(N): # terms up to N factorial-base digits; 20 generates b-file
f = [factorial(i) for i in range(1, N+1)]
return list(filter(isprime, (facbase(k, f) for k in range(2**N))))
print(auptoN(10)) # Michael S. Branicky, Oct 15 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Amarnath Murthy, Nov 07 2003
EXTENSIONS
More terms from Vladeta Jovovic, Nov 08 2003
STATUS
approved