login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A267487
Primes p such that A001221(p+1)^(p-1) == 1 (mod p^2).
1
2, 3, 7, 31, 127, 1093, 3511, 8191, 131071, 524287
OFFSET
1,1
COMMENTS
No further terms up to 10^9.
Are all terms of A000668 and A001220 in the sequence?
Does the sequence contain any terms not in A000668 or A001220 other than 2?
MAPLE
isA267487 := proc(p)
if isprime(p) then
A001221(p+1) ;
simplify(modp(% &^ (p-1), p^2) =1 );
else
false;
end if;
end proc:
p := 2;
for i from 1 do
if isA267487(p) then
printf("%d\n", p) ;
end if;
p := nextprime(p) ;
end do: # R. J. Mathar, Jan 23 2016
MATHEMATICA
Select[Prime[Range[3200]], Mod[PrimeNu[# + 1], #^2]^(# - 1) == 1 &] (* G. C. Greubel, Apr 25 2017 *)
PROG
(PARI) forprime(p=1, 1e9, if(Mod(omega(p+1), p^2)^(p-1)==1, print1(p, ", ")))
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Felix Fröhlich, Jan 15 2016
STATUS
approved