login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A267486
Triangle of coefficients of Gaussian polynomials [2n+7,6]_q represented as finite sum of terms (1+q^2)^k*q^(g-k), where k = 0,1,...,g with g=6n+3.
6
-1, -2, 1, 1, 0, 2, -2, -15, 7, 17, -5, -7, 1, 1, -2, -6, 25, 71, -80, -218, 126, 284, -106, -190, 48, 69, -11, -13, 1, 1, 0, 6, -12, -137, 196, 945, -811, -2745, 1602, 4163, -1780, -3711, 1193, 2059, -493, -722, 123, 156, -17, -19, 1, 1, -3, -12, 94, 358, -952, -3430, 4699, 15615, -13467, -39946, 24494, 63168, -29535, -65638, 24206, 46512, -13652, -22891, 5294, 7834, -1386, -1831, 234, 279, -23, -25, 1, 1
OFFSET
0,2
COMMENTS
The entry a(n,k), n >= 0, k = 0,1,...,g, where g=6n+3, of this irregular triangle is the coefficient of (1+q^2)^k*q^(g-k) in the representation of the Gaussian polynomial [2n+7,6]_q = Sum_{k=0..g) a(n,k)*(1+q^2)^k*q^(g-k).
Row n is of length 6n+4.
The sequence arises in the formal derivation of the stability polynomial B(x) = Sum_{i=0..N} d_i T(iM,x) of rank N, and degree L, where T(iM,x) denotes the Chebyshev polynomial of the first kind of degree iM. The coefficients d_i are determined by order conditions on the stability polynomial.
Conjecture: More generally, the Gaussian polynomial [2*n+m+1-(m mod 2),m]_q = Sum_{k=0..g(m;n)} a(m;n,k)*(1+q^2)^k*q^(g(m;n)-k), for m >= 0, n >= 0, where g(m;n) = m*n if m is odd and (2*n+1)*m/2 if m is even, and the tabf array entries a(m;n,k) are the coefficients of the g.f. for the row n polynomials G(m;n,x) = (d^m/dt^m)G(m;n,t,x)/m!|_{t=0}, with G(m;n,t,x) = (1+t)*Product_{k=1..n+(m - m (mod 2))/2}(1 + t^2 + 2*t*T(k,x/2) (Chebyshev's T-polynomials). Hence a(m;n,k) = [x^k]G(m;n,x), for k=0..g(m;n). The present entry is the instance m = 2. (Thanks to Wolfdieter Lang for clarifying the text on the general prescription of a(m;n,k).)
LINKS
S. O'Sullivan, A class of high-order Runge-Kutta-Chebyshev stability polynomials, Journal of Computational Physics, 300 (2015), 665-678.
FORMULA
G.f. for row polynomial: G(n,x) = (d^6/dt^6)((1+t)*Product_{i=1..n+1}(1+t^2+2t*T(i,x/2))/6!)|_{t=0}.
EXAMPLE
-1,-2,1,1;
0,2,-2,-15,7,17,-5,-7,1,1;
-2,-6,25,71,-80,-218,126,284,-106,-190,48,69,-11,-13,1,1;
MAPLE
A267486 := proc (n, k) local y: y := expand(subs(t = 0, diff((1+t)*product(1+t^2+2*t*ChebyshevT(i, x/2), i = 1 .. n+3), t$6)/6!)): if k = 0 then subs(x = 0, y) else subs(x = 0, diff(y, x$k)/k!) end if: end proc: seq(seq(A267486(n, k), k = 0 .. 6*n+3), n = 0 .. 20);
MATHEMATICA
row[n_] := 1/6! D[(1+t)*Product[1+t^2+2*t*ChebyshevT[i, x/2], {i, 1, n+1}], {t, 6}] /. t -> 0 // CoefficientList[#, x]&; Table[row[n], {n, 0, 20}] // Flatten (* From A267120 entry by Jean-François Alcover *)
CROSSREFS
KEYWORD
sign,tabf
AUTHOR
Stephen O'Sullivan, Jan 15 2016
EXTENSIONS
Added row length
STATUS
approved