login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A267483 Triangle of coefficients of Gaussian polynomials [2n+3,2]_q represented as finite sum of terms (1+q^2)^k*q^(g-k), where k = 0,1,...,g with g=2n+1. 6
1, 1, 0, -1, 1, 1, 1, 2, -2, -3, 1, 1, 0, -2, 4, 7, -4, -5, 1, 1, 1, 3, -6, -13, 11, 16, -6, -7, 1, 1, 0, -3, 9, 22, -24, -40, 22, 29, -8, -9, 1, 1, 1, 4, -12, -34, 46, 86, -62, -91, 37, 46, -10, -11, 1, 1, 0, -4, 16, 50, -80, -166, 148, 239, -128, -174, 56, 67, -12, -13, 1, 1, 1, 5, -20, -70, 130, 296, -314, -553, 367, 541, -230, -297, 79, 92, -14, -15, 1, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,8
COMMENTS
The entry a(n,k), n >= 0, k = 0,1,...,g, where g=2n+1, of this irregular triangle is the coefficient of (1+q^2)^k*q^(g-k) in the representation of the Gaussian polynomial [2n+3,2]_q = Sum_{k=0..g) a(n,k)*(1+q^2)^k*q^(g-k).
Row n is of length 2n+2.
The sequence arises in the formal derivation of the stability polynomial B(x) = sum_{i=0..N} d_i T(iM,x) of rank N, and degree L, where T(iM,x) denotes the Chebyshev polynomial of the first kind (A053120) of degree iM. The coefficients d_i are determined by order conditions on the stability polynomial.
Conjecture: More generally, the Gaussian polynomial [2*n+m+1-(m mod 2),m]_q = Sum_{k=0..g(m;n)} a(m;n,k)*(1+q^2)^k*q^(g(m;n)-k), for m >= 0, n >= 0, where g(m;n) = m*n if m is odd and (2*n+1)*m/2 if m is even, and the tabf array entries a(m;n,k) are the coefficients of the g.f. for the row n polynomials G(m;n,x) = (d^m/dt^m)G(m;n,t,x)/m!|_{t=0}, with G(m;n,t,x) = (1+t)*Product_{k=1..n+(m - m (mod 2))/2}(1 + t^2 + 2*t*T(k,x/2) (Chebyshev's T-polynomials). Hence a(m;n,k) = [x^k]G(m;n,x), for k=0..g(m;n). The present entry is the instance m = 2. (Thanks to Wolfdieter Lang for clarifying the text on the general prescription of a(m;n,k).)
LINKS
S. O'Sullivan, A class of high-order Runge-Kutta-Chebyshev stability polynomials, Journal of Computational Physics, 300 (2015), 665-678.
FORMULA
G.f. for row polynomial: G(n,x) = (d^2/dt^2)((1+t)*Product_{i=1..n+1}(1+t^2+2t*T(i,x/2)))/2!|_{t=0}.
EXAMPLE
1,1;
0,-1,1,1;
1,2,-2,-3,1,1;
0,-2,4,7,-4,-5,1,1;
1,3,-6,-13,11,16,-6,-7,1,1;
0,-3,9,22,-24,-40,22,29,-8,-9,1,1;
1,4,-12,-34,46,86,-62,-91,37,46,-10,-11,1,1;
0,-4,16,50,-80,-166,148,239,-128,-174,56,67,-12,-13,1,1;
1,5,-20,-70,130,296,-314,-553,367,541,-230,-297,79,92,-14,-15,1,1;
MAPLE
A267483 := proc (n, k) local y: y := expand(subs(t = 0, diff((1+t)*product(1+t^2+2*t*ChebyshevT(i, x/2), i = 1 .. n+1), t$2)/2)): if k = 0 then subs(x = 0, y) else subs(x = 0, diff(y, x$k)/k!) end if: end proc: seq(seq(A267483(n, k), k = 0 .. 2*n+1), n = 0 .. 20);
# More efficient:
N:= 20: # to get rows 0 to N
P[0]:= (1+t)*(t^2 + t*x + 1):
B[0]:= 1+x:
for n from 1 to N do
P[n]:= expand(series(P[n-1]*(1+t^2+2*t*orthopoly[T](n+1, x/2)), t, 3));
B[n]:= coeff(P[n], t, 2);
od:
seq(seq(coeff(B[n], x, j), j=0..2*n+1), n=0..N); # From A267120 entry by Robert Israel
MATHEMATICA
row[n_] := 1/2! D[(1+t)*Product[1+t^2+2*t*ChebyshevT[i, x/2], {i, 1, n+1}], {t, 2}] /. t -> 0 // CoefficientList[#, x]&; Table[row[n], {n, 0, 20}] // Flatten (* From A267120 entry by Jean-François Alcover *)
CROSSREFS
Sequence in context: A290563 A071474 A071480 * A071473 A084189 A084352
KEYWORD
sign,tabf
AUTHOR
Stephen O'Sullivan, Jan 15 2016
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 25 03:15 EDT 2024. Contains 371964 sequences. (Running on oeis4.)