login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A227425
Decimal expansion of 'B', a Young-Fejér-Jackson constant linked to the positivity of certain sine sums.
3
2, 1, 1, 0, 2, 3, 3, 9, 6, 6, 1, 2, 1, 5, 7, 2, 1, 9, 6, 4, 6, 6, 8, 2, 8, 1, 5, 6, 6, 6, 3, 8, 4, 5, 1, 8, 9, 6, 4, 2, 1, 1, 3, 0, 2, 9, 4, 1, 5, 0, 6, 4, 8, 4, 2, 2, 3, 5, 2, 3, 1, 2, 1, 6, 2, 6, 5, 8, 9, 7, 0, 5, 8, 1, 4, 4, 0, 1, 3, 3, 4, 3, 7, 3, 6, 2, 9, 1, 8, 6, 2, 8, 3, 3, 0, 1, 2, 2, 3, 3, 9
OFFSET
1,1
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, p. 242.
FORMULA
Given lambda from A227423, 'b' is the unique positive solution to (1+lambda)*Pi*((b-1)*psi(1+(b-1)/2)-2*b*psi(1+b/2)+(b+1)*psi(1+(b+1)/2)) = 2*sin(lambda*Pi), where psi is the digamma function.
EXAMPLE
2.110233966121572196466828156663845189642113029415064842235231216265897058...
MATHEMATICA
b /. FindRoot[(1 + lambda) Pi == Tan[lambda*Pi] && (1 + lambda)*Pi*((b - 1)*PolyGamma[1 + (b - 1)/2] - 2*b*PolyGamma[1 + b/2] + (b + 1) PolyGamma[1 + (b + 1)/2]) == 2*Sin[lambda*Pi], {lambda, 2/5}, {b, 2}, WorkingPrecision -> 105] // RealDigits[#][[1, 1;; 101]&
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
STATUS
approved