Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #15 Dec 11 2024 15:40:24
%S 2,1,1,0,2,3,3,9,6,6,1,2,1,5,7,2,1,9,6,4,6,6,8,2,8,1,5,6,6,6,3,8,4,5,
%T 1,8,9,6,4,2,1,1,3,0,2,9,4,1,5,0,6,4,8,4,2,2,3,5,2,3,1,2,1,6,2,6,5,8,
%U 9,7,0,5,8,1,4,4,0,1,3,3,4,3,7,3,6,2,9,1,8,6,2,8,3,3,0,1,2,2,3,3,9
%N Decimal expansion of 'B', a Young-Fejér-Jackson constant linked to the positivity of certain sine sums.
%D Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, p. 243.
%F Given lambda from A227423, 'b' is the unique positive solution to (1+lambda)*Pi*((b-1)*psi(1+(b-1)/2)-2*b*psi(1+b/2)+(b+1)*psi(1+(b+1)/2)) = 2*sin(lambda*Pi), where psi is the digamma function.
%e 2.110233966121572196466828156663845189642113029415064842235231216265897058...
%t b /. FindRoot[(1 + lambda) Pi == Tan[lambda*Pi] && (1 + lambda)*Pi*((b - 1)*PolyGamma[1 + (b - 1)/2] - 2*b*PolyGamma[1 + b/2] + (b + 1) PolyGamma[1 + (b + 1)/2]) == 2*Sin[lambda*Pi], {lambda, 2/5}, {b, 2}, WorkingPrecision -> 105] // RealDigits[#][[1, 1;;101]&
%Y Cf. A227422, A227423, A227424.
%K nonn,cons,changed
%O 1,1
%A _Jean-François Alcover_, Jul 11 2013