The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A227426 Number of partitions into distinct parts without three consecutive parts. 2
 1, 1, 1, 2, 2, 3, 3, 5, 6, 7, 9, 11, 13, 16, 20, 23, 28, 33, 39, 46, 55, 63, 75, 87, 101, 117, 136, 156, 180, 207, 238, 272, 311, 355, 404, 460, 522, 592, 670, 758, 855, 965, 1087, 1223, 1373, 1543, 1728, 1936, 2166, 2421, 2702, 3016, 3359, 3741, 4162, 4626, 5136, 5702, 6320, 7002, 7753, 8576, 9479, 10473 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS Number of partitions into distinct parts with maximal perimeter. For n>=1, diagonal of A227344. LINKS Joerg Arndt and Alois P. Heinz, Table of n, a(n) for n = 0..10000 FORMULA a(n) = c * exp(r*sqrt(n)) / n^(3/4), where r = 1.75931899568... and c = 0.2080626386... - Vaclav Kotesovec, May 24 2018 MAPLE b:= proc(n, i, t) option remember; `if`(n=0, 1, `if`(i<1, 0,        b(n, i-1, 0)+`if`(i>n or t=2, 0, b(n-i, i-1, t+1))))     end: a:= n-> b(n, n, 0): seq(a(n), n=0..80);  # Alois P. Heinz, Jul 15 2013 MATHEMATICA b[n_, i_, t_] := b[n, i, t] = If[n==0, 1, If[i<1, 0, b[n, i-1, 0] + If[i>n || t==2, 0, b[n-i, i-1, t+1]]]]; a[n_] := b[n, n, 0]; Table[a[n], {n, 0, 80}] (* Jean-François Alcover, Jul 02 2015, after Alois P. Heinz *) PROG (Haskell) a227426 = p 1 1 where   p _ _ 0 = 1   p k i m = if m < k then 0 else p (k + i) (3 - i) (m - k) + p (k + 1) 1 m -- Reinhard Zumkeller, Jul 14 2013 CROSSREFS Cf. A000009. Sequence in context: A097450 A062303 A180682 * A229950 A050318 A130841 Adjacent sequences:  A227423 A227424 A227425 * A227427 A227428 A227429 KEYWORD nonn AUTHOR Joerg Arndt, Jul 11 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 25 16:03 EDT 2021. Contains 346291 sequences. (Running on oeis4.)