login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A227427
Numbers k such that Sum_{i=1..k} i^sigma(i) == 0 (mod k).
8
1, 3, 17, 64, 223, 816, 3536, 22704, 27549, 401311
OFFSET
1,2
EXAMPLE
1^sigma(1) + 2^sigma(2) + ... + 16^sigma(16) + 17^sigma(17) =
1^1 + 2^3 + 3^4 + 4^7 + 5^6 + 6^12 + 7^8 + 8^15 + 9^13 + 10^18 + 11^12 + 12^28 + 13^14 + 14^24 + 15^24 + 16^31 + 17^18 = 21267649601053603536507860737702745369 and 21267649601053603536507860737702745369 / 17 = 1251038211826682560971050631629573257.
MAPLE
with(numtheory); ListA227427:=proc(q) local i, n;
for n from 1 to q do if add(i^sigma(i), i=1..n) mod n=0 then print(n);
fi; od; end: ListA227427(10^6);
MATHEMATICA
With[{nn=40000}, Transpose[Select[Thread[{Accumulate[Table[n^DivisorSigma[ 1, n], {n, nn}]], Range[nn]}], Divisible[#[[1]], #[[2]]]&]][[2]]] (* Harvey P. Dale, Jun 08 2016 *)
PROG
(PARI) isok(k) = sum(i=1, k, Mod(i, k)^sigma(i)) == 0; \\ Michel Marcus, Feb 18 2021
CROSSREFS
Sequence in context: A208996 A273949 A174285 * A120386 A061982 A101562
KEYWORD
nonn,more
AUTHOR
Paolo P. Lava, Jul 11 2013
EXTENSIONS
a(7)-a(9) from Giovanni Resta, Jul 11 2013
a(10) from Jinyuan Wang, Feb 18 2021
STATUS
approved