This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A227424 Decimal expansion of 'mu', a Young-Fejér-Jackson constant linked to the positivity of certain sine sums. 3
 8, 1, 2, 8, 2, 5, 2, 4, 2, 1, 0, 5, 5, 0, 7, 2, 6, 0, 7, 6, 0, 0, 8, 7, 1, 2, 3, 1, 1, 8, 3, 7, 0, 2, 9, 8, 6, 4, 7, 0, 1, 0, 1, 3, 4, 0, 5, 2, 8, 7, 0, 3, 4, 0, 6, 5, 7, 3, 6, 0, 0, 3, 9, 5, 8, 0, 7, 2, 7, 4, 7, 2, 6, 7, 9, 4, 0, 2, 2, 7, 2, 3, 8, 3, 9, 1, 2, 5, 2, 9, 4, 7, 9, 0, 9, 6, 4, 6, 7, 2, 9, 8, 2 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 REFERENCES Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, p. 242. LINKS FORMULA Given lambda from A227423, mu is the unique positive solution of (1+lambda)*sin(mu*Pi) = mu*sin(lambda*Pi). EXAMPLE 0.81282524210550726076008712311837029864701013405287034065736003958072747... MAPLE Digits:= 127: lambda:= solve((1+x)*Pi - tan(x*Pi), x): mu:= fsolve((1+lambda)*sin(x*Pi)-x*sin(lambda*Pi), x, 0.1..1): s:= convert(mu, string): seq(parse(s[n+1]), n=1..Digits-10);  # Alois P. Heinz, Jul 11 2013 MATHEMATICA mu /. FindRoot[(1 + lambda)*Pi == Tan[lambda*Pi] && (1 + lambda)*Sin[mu*Pi] == mu* Sin[lambda*Pi], {lambda, 2/5}, {mu, 4/5}, WorkingPrecision -> 100] // RealDigits // First CROSSREFS Cf. A227422, A227423, A227425. Sequence in context: A154167 A140242 A156944 * A248965 A266152 A021127 Adjacent sequences:  A227421 A227422 A227423 * A227425 A227426 A227427 KEYWORD nonn,cons AUTHOR Jean-François Alcover, Jul 11 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 18 10:39 EDT 2019. Contains 328147 sequences. (Running on oeis4.)