login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A227424
Decimal expansion of 'mu', a Young-Fejér-Jackson constant linked to the positivity of certain sine sums.
3
8, 1, 2, 8, 2, 5, 2, 4, 2, 1, 0, 5, 5, 0, 7, 2, 6, 0, 7, 6, 0, 0, 8, 7, 1, 2, 3, 1, 1, 8, 3, 7, 0, 2, 9, 8, 6, 4, 7, 0, 1, 0, 1, 3, 4, 0, 5, 2, 8, 7, 0, 3, 4, 0, 6, 5, 7, 3, 6, 0, 0, 3, 9, 5, 8, 0, 7, 2, 7, 4, 7, 2, 6, 7, 9, 4, 0, 2, 2, 7, 2, 3, 8, 3, 9, 1, 2, 5, 2, 9, 4, 7, 9, 0, 9, 6, 4, 6, 7, 2, 9, 8, 2
OFFSET
0,1
COMMENTS
Named after the English mathematician William Henry Young (1863-1942), the Hungarian mathematician Lipót Fejér (or Leopold Fejér, 1880-1959) and the American mathematician Dunham Jackson (1888-1946). - Amiram Eldar, Jun 24 2021
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, p. 242.
LINKS
Leopold Fejér, Lebesguessche Konstanten und divergente Fourierreihen, J. Reine Angew. Math., Vol.. 138 (1910), pp. 22-53; alternative link.
Dunham Jackson, Über eine trigonometrische Summe, Rendiconti del Circolo Matematico di Palermo (1884-1940), Vol. 32, No. 1 (1911), pp. 257-262.
W. H. Young, On a certain series of Fourier, Proc. London Math. Soc., Vol. 11 (1912), pp. 357-366.
FORMULA
Given lambda from A227423, mu is the unique positive solution of (1+lambda)*sin(mu*Pi) = mu*sin(lambda*Pi).
EXAMPLE
0.81282524210550726076008712311837029864701013405287034065736003958072747...
MAPLE
Digits:= 127:
lambda:= solve((1+x)*Pi - tan(x*Pi), x):
mu:= fsolve((1+lambda)*sin(x*Pi)-x*sin(lambda*Pi), x, 0.1..1):
s:= convert(mu, string):
seq(parse(s[n+1]), n=1..Digits-10); # Alois P. Heinz, Jul 11 2013
MATHEMATICA
mu /. FindRoot[(1 + lambda)*Pi == Tan[lambda*Pi] && (1 + lambda)*Sin[mu*Pi] == mu* Sin[lambda*Pi], {lambda, 2/5}, {mu, 4/5}, WorkingPrecision -> 100] // RealDigits // First
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
STATUS
approved