The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A336114 The hafnian of a symmetric Toeplitz matrix of order 2*n, n>=2 with the first row (0,1,2,...,2,1); a(0)=a(1)=1. 4
 1, 1, 6, 64, 930, 17088, 380870, 9992064, 301738626, 10310669440, 393355695942, 16573741095360, 764401360062626, 38304552622588224, 2072335759298438790, 120390122318741003008, 7474705606285243345410 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Number of perfect matchings of a chord diagram with 2*n vertices, where neighboring vertices are joined  by one chord, and any other pair of vertices is joined by two chords. LINKS Dmitry Efimov, The hafnian of Toeplitz matrices of a special type, perfect matchings and Bessel polynomials, arXiv:1904.08651 [math.CO], 2020. FORMULA a(n) = 2*n*Sum_{k=0..n} (-1)^(n-k)*(n+k-1)!/(k!*(n-k)!), n>=2. a(n+1) = (4*n+3)*a(n)-(4*n-7)*a(n-1)-a(n-2), n>=4. a(n+1) = (8*n^2*a(n)+(2*n+1)*a(n-1))/(2*n-1), n>=3. a(n) = |A002119(n)|-|A002119(n-1)|, n>=2. a(n) ~ (2*n)!/(sqrt(e)*n!). a(n) = U(n,1+2*n,-1) for n >= 2, where U(a,b,c) is the confluent hypergeometric function of the second kind. - Stefano Spezia, Jul 22 2020 EXAMPLE A symmetric 4x4 Toeplitz matrix A with the first row (0,1,2,1) has the form: 0 1 2 1 1 0 1 2 2 1 0 1 1 2 1 0. Its hafnian equals Hf(A)=a12*a34+a13*a24+a14*a23=1*1+2*2+1*1=6. MATHEMATICA Join[{1, 1}, Table[2 HypergeometricU[n, 1+2 n, -1], {n, 2, 16}]] (* Stefano Spezia, Jul 22 2020 *) CROSSREFS Cf. A002119, A336286, A336400. Sequence in context: A296165 A173500 A141008 * A258425 A249592 A333983 Adjacent sequences:  A336111 A336112 A336113 * A336115 A336116 A336117 KEYWORD nonn AUTHOR Dmitry Efimov, Jul 21 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 26 05:46 EDT 2021. Contains 348256 sequences. (Running on oeis4.)