login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A336112
a(n) is the least number k such that the Sum_{i=0..k} sqrt(k) equals or exceeds n.
0
0, 1, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10, 10, 10, 11, 11, 11, 12, 12, 12, 12, 13, 13, 13, 14, 14, 14, 14, 15, 15, 15, 15, 16, 16, 16, 16, 17, 17, 17, 17, 18, 18, 18, 18, 19, 19, 19, 19, 19, 20, 20, 20, 20, 21, 21, 21, 21, 21, 22, 22, 22, 22, 23, 23, 23, 23
OFFSET
0,3
COMMENTS
Inspired by A045880.
Let c = (9/4)^(1/3) = (3/2)^(2/3) ~ 1.310370697..., then a(n) ~ c*n^(2/3).
a(10^k) for k>= 0: 1, 6, 28, 131, 608, 2823, 13104, 60822, 282311, 1310371, 6082202, 28231081, 131037070, 608220200, ..., .
FORMULA
a(k*n) ~ k^(2/3)*a(n).
EXAMPLE
a(0) = 0 since the sqrt(0) = 0;
a(1) = 1 since the sqrt(0) + sqrt(1) = 1;
a(2) = 2 since the sqrt(0) + sqrt(1) + sqrt(2) ~ 2.41421... which exceeds 2;
a(3) = 3 since the sqrt(0) + sqrt(1) + sqrt(2) + sqrt(3) ~ 4.146264... which easily exceeds 3;
a(4) = 3 because the sqrt(0) + sqrt(1) + sqrt(2) + sqrt(3) ~ 4.146264... which barely exceeds 4; etc.
MATHEMATICA
f[n_] := Block[{k = s = 0}, While[s < n, k++; s = s + Sqrt@k]; k]; Array[f, 75, 0]
PROG
(PARI) a(n) = my(s=0, k=0); while ((s+=sqrt(k)) < n, k++); k; \\ Michel Marcus, Jul 09 2020
CROSSREFS
KEYWORD
nonn
AUTHOR
Robert G. Wilson v, Jul 08 2020
STATUS
approved