login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A073333 Decimal expansion of 1/(e-1) = Sum(k >= 1, exp(-k)). 7
5, 8, 1, 9, 7, 6, 7, 0, 6, 8, 6, 9, 3, 2, 6, 4, 2, 4, 3, 8, 5, 0, 0, 2, 0, 0, 5, 1, 0, 9, 0, 1, 1, 5, 5, 8, 5, 4, 6, 8, 6, 9, 3, 0, 1, 0, 7, 5, 3, 9, 6, 1, 3, 6, 2, 6, 6, 7, 8, 7, 0, 5, 9, 6, 4, 8, 0, 4, 3, 8, 1, 7, 3, 9, 1, 6, 6, 9, 7, 4, 3, 2, 8, 7, 2, 0, 4, 7, 0, 9, 4, 0, 4, 8, 7, 5, 0, 5, 7, 6, 5, 4, 6, 2, 0 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

The value of the general continued fraction with the partial numerators (A000027) and the partial denominators (A000027). The value of the fractional limit of the numerators (A000166) and the denominators (A002467). Abs(A002467/(e-1)-A000166)->0. - Seiichi Kirikami, Oct 30 2011

REFERENCES

Mohammad K. Azarian, Euler's Number Via Difference Equations, International Journal of Contemporary Mathematical Sciences, Vol. 7, 2012, No. 22, pp. 1095 - 1102.

Wolfram Research, Mathematica, Version 4.1.0.0, Help Browser, under the function NSumExtraTerms

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..20000

Mohammad K. Azarian, A Limit Expression of 1/(e-1), Problem # 799, College Mathematics Journal, Vol. 36, No. 2, March 2005, p. 161. Solution appeared in Vol. 37, No. 2, March 2006, pp. 147-148.

H. W. Gould, A rearrangement of series based on a partition of the natural numbers

Michel Waldschmidt, Continued fractions, Ecole de recherche CIMPA-Oujda, Théorie des Nombres et ses Applications, 18 - 29 mai 2015:  Oujda (Maroc).

Eric Weisstein's World of Mathematics, Continued Fraction Constants

Eric Weisstein's World of Mathematics, Generalized Continued Fraction

FORMULA

Equals 1/(exp(1)-1). - Joseph Biberstine (jrbibers(AT)indiana.edu), Nov 03 2004

Also the unique real solution to log(1+x) - log(x) = 1. Equals 1-1/(1+1/(exp(1)-2)). Continued fraction is [0:1, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 10, ...]. - Gerald McGarvey, Aug 14 2004

Equals Sum_{n>=0} B_n/n!, where B_n is a Bernoulli number. - Fredrik Johansson, Oct 18 2006

1/(e-1) = 1/(1+2/(2+3/(3+4/(4+5/(5+...(continued fraction)))))). - Philippe Deléham, Mar 09 2013

Equals integral(floor(x)*exp(-x), {x, 0, infinity}). - Jean-François Alcover, Mar 20 2013

From Peter Bala, Oct 09 2013: (Start)

1/(e - 1) = 1/2*sum {n >= 0} 1/sinh(2^n). (Gould, equation 22).

Define s(n) = sum {k = 1..n} 1/k! for n >= 1. Then 1/(e - 1) = 1 - sum {n >= 1} 1/( (n+1)!*s(n)*s(n+1) ) is a rapidly converging series of rationals (see A194807). Equivalently, 1/(e - 1) = 1 - 1!/(1*3) - 2!/(3*10) - 3!/(10*41) - ..., where [1, 3, 10, 41, ... ] is A002627.

We also have the alternating series 1/(e - 1) = 1!/(1*1) - 2!/(1*4) + 3!/(4*15) - 4!/(15*76) + ..., where [1 ,1, 4, 15, 76, ...] is A002467. (End)

From Vaclav Kotesovec, Oct 13 2018: (Start)

Equals A185393 - 1.

Equals -LambertW(exp(1/(1 - exp(1))) / (1 - exp(1))).

Equals -1 - LambertW(-1, exp(1/(1 - exp(1))) / (1 - exp(1))). (End)

EXAMPLE

0.581976706869326424385002005109011558546869301075396136266787059648...

MAPLE

h:=x->sum(1/exp(n), n=1..x); evalf[110](h(1500)); evalf[110](h(4000));

MATHEMATICA

RealDigits[N[Sum[Exp[-n], {n, 1, Infinity}], 120]][[1]]

RealDigits[1/(E - 1), 10, 120][[1]] (* Eric W. Weisstein, May 08 2013 *)

PROG

(PARI) suminf(k=1, exp(-k)) \\ Charles R Greathouse IV, Oct 04 2011

(PARI) 1/(exp(1)-1) \\ Charles R Greathouse IV, Oct 04 2011

(MAGMA) 1/(Exp(1) - 1); // G. C. Greubel, Apr 09 2018

CROSSREFS

Cf. A001113, A000027, A000166, A002467, A185393, A194807.

Sequence in context: A227158 A098881 A185393 * A316229 A235936 A260781

Adjacent sequences:  A073330 A073331 A073332 * A073334 A073335 A073336

KEYWORD

cons,nonn

AUTHOR

Robert G. Wilson v, Aug 22 2002

EXTENSIONS

Entry revised by N. J. A. Sloane, Apr 07 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 24 00:38 EDT 2019. Contains 323528 sequences. (Running on oeis4.)