The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A073336 Total number of square parts in all partitions of n. 6
 0, 1, 2, 4, 8, 13, 21, 33, 51, 76, 111, 159, 226, 315, 435, 593, 805, 1077, 1435, 1893, 2486, 3237, 4198, 5405, 6935, 8843, 11235, 14201, 17893, 22437, 28052, 34929, 43371, 53653, 66201, 81410, 99876, 122155, 149063, 181399, 220280, 266811, 322524, 388960 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Vaclav Kotesovec, Table of n, a(n) for n = 0..10000 (terms 0..1000 from Alois P. Heinz) FORMULA a(n) = Sum_{k=1..n} A046951(k)*A000041(n-k). G.f.: Sum_{i>=1} x^(i^2)/(1 - x^(i^2)) / Product_{j>=1} (1 - x^j). - Ilya Gutkovskiy, Jan 24 2017 MAPLE b:= proc(n, i) option remember; `if`(n=0, [1, 0],       `if`(i<1, [0, 0], add((l->l+[0, `if`(j>0 and issqr(i),        l[1]*j, 0)])(b(n-i*j, i-1)), j=0..iquo(n, i))))     end: a:= n-> b(n, n)[2] : seq(a(n), n=0..60);  # Alois P. Heinz, Feb 19 2013 MATHEMATICA b[n_, i_] :=  b[n, i] = If[n == 0, {1, 0}, If[i<1, {0, 0}, Sum[Function[{l}, l+{0, If[j>0 && IntegerQ[Sqrt[i]], l[[1]]*j, 0]}][b[n-i*j, i-1]], {j, 0, Quotient[n, i]}]]]; a[n_] := b[n, n][[2]]; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, May 13 2015, after Alois P. Heinz *) CROSSREFS Cf. A000041, A046951, A309535. Sequence in context: A218913 A241691 A164429 * A164420 A164457 A164419 Adjacent sequences:  A073333 A073334 A073335 * A073337 A073338 A073339 KEYWORD easy,nonn AUTHOR Vladeta Jovovic, Aug 22 2002 EXTENSIONS More terms from Emeric Deutsch, Nov 18 2004 a(0) inserted by Alois P. Heinz, Feb 19 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 19 07:08 EDT 2021. Contains 347554 sequences. (Running on oeis4.)