login
A073336
Total number of square parts in all partitions of n.
7
0, 1, 2, 4, 8, 13, 21, 33, 51, 76, 111, 159, 226, 315, 435, 593, 805, 1077, 1435, 1893, 2486, 3237, 4198, 5405, 6935, 8843, 11235, 14201, 17893, 22437, 28052, 34929, 43371, 53653, 66201, 81410, 99876, 122155, 149063, 181399, 220280, 266811, 322524, 388960
OFFSET
0,3
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..10000 (terms 0..1000 from Alois P. Heinz)
FORMULA
a(n) = Sum_{k=1..n} A046951(k)*A000041(n-k).
G.f.: Sum_{i>=1} x^(i^2)/(1 - x^(i^2)) / Product_{j>=1} (1 - x^j). - Ilya Gutkovskiy, Jan 24 2017
MAPLE
b:= proc(n, i) option remember; `if`(n=0, [1, 0],
`if`(i<1, [0, 0], add((l->l+[0, `if`(j>0 and issqr(i),
l[1]*j, 0)])(b(n-i*j, i-1)), j=0..iquo(n, i))))
end:
a:= n-> b(n, n)[2] :
seq(a(n), n=0..60); # Alois P. Heinz, Feb 19 2013
MATHEMATICA
b[n_, i_] := b[n, i] = If[n == 0, {1, 0}, If[i<1, {0, 0}, Sum[Function[{l}, l+{0, If[j>0 && IntegerQ[Sqrt[i]], l[[1]]*j, 0]}][b[n-i*j, i-1]], {j, 0, Quotient[n, i]}]]]; a[n_] := b[n, n][[2]]; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, May 13 2015, after Alois P. Heinz *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Vladeta Jovovic, Aug 22 2002
EXTENSIONS
More terms from Emeric Deutsch, Nov 18 2004
a(0) inserted by Alois P. Heinz, Feb 19 2013
STATUS
approved