login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A164429
Number of binary strings of length n with no substrings equal to 0000, 0011, or 1011.
1
1, 2, 4, 8, 13, 21, 33, 50, 75, 112, 166, 245, 361, 531, 780, 1145, 1680, 2464, 3613, 5297, 7765, 11382, 16683, 24452, 35838, 52525, 76981, 112823, 165352, 242337, 355164, 520520, 762861, 1118029, 1638553, 2401418, 3519451, 5158008, 7559430, 11078885, 16236897
OFFSET
0,2
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..2000 (first 500 terms from R. H. Hardin)
FORMULA
G.f.: (x+1)*(x^2+1)*(x^2-x+1)/((x-1)*(x^3+x-1)). - R. J. Mathar, Jan 19 2011
a(n) = a(n-1) + a(n-3) + 4 for n>4. - Greg Dresden, Feb 09 2020
MATHEMATICA
LinearRecurrence[{2, -1, 1, -1}, {1, 2, 4, 8, 13, 21}, 41] (* Harvey P. Dale, Sep 02 2017; amended for offset 0 by Georg Fischer, Apr 02 2019 *)
PROG
(PARI) x='x+O('x^50); Vec((x+1)*(x^2+1)*(x^2-x+1)/((x-1)*(x^3+x-1))) \\ Georg Fischer, Apr 02 2019
CROSSREFS
Sequence in context: A218913 A349061 A241691 * A073336 A164420 A164457
KEYWORD
nonn,easy
AUTHOR
R. H. Hardin, Aug 14 2009
EXTENSIONS
Edited by Alois P. Heinz, Oct 11 2017
STATUS
approved