|
|
A218913
|
|
Number of distinct orders of subgroups of the symmetric group.
|
|
4
|
|
|
1, 1, 2, 4, 8, 13, 21, 31, 49, 74, 113, 139, 216, 268
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
LINKS
|
Table of n, a(n) for n=0..13.
L. Naughton and G. Pfeiffer, Integer sequences realized by the subgroup pattern of the symmetric group, arXiv:1211.1911 [math.GR], 2012-2013 and J. Int. Seq. 16 (2013) #13.5.8
Liam Naughton, CountingSubgroups.g
Liam Naughton and Goetz Pfeiffer, Tomlib, The GAP table of marks library,
|
|
PROG
|
(GAP)
Size(DuplicateFreeList(List(ConjugacyClassesSubgroups(G), x-> Size(Representative (x)))));
(Sage)
def A218913(n):
G = SymmetricGroup(n)
subgroups = G.conjugacy_classes_subgroups()
return len(set(subG.cardinality() for subG in subgroups))
# Peter Luschny, Apr 21 2016
|
|
CROSSREFS
|
Sequence in context: A005282 A046185 A259964 * A349061 A241691 A164429
Adjacent sequences: A218910 A218911 A218912 * A218914 A218915 A218916
|
|
KEYWORD
|
nonn,more
|
|
AUTHOR
|
Liam Naughton, Nov 09 2012
|
|
STATUS
|
approved
|
|
|
|