The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A218913 Number of distinct orders of subgroups of the symmetric group. 4
 1, 1, 2, 4, 8, 13, 21, 31, 49, 74, 113, 139, 216, 268 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS L. Naughton and G. Pfeiffer, Integer sequences realized by the subgroup pattern of the symmetric group, arXiv:1211.1911 [math.GR], 2012-2013 and J. Int. Seq. 16 (2013) #13.5.8 Liam Naughton, CountingSubgroups.g Liam Naughton and Goetz Pfeiffer, Tomlib, The GAP table of marks library, PROG (GAP) Size(DuplicateFreeList(List(ConjugacyClassesSubgroups(G), x-> Size(Representative (x))))); (Sage) def A218913(n):     G = SymmetricGroup(n)     subgroups = G.conjugacy_classes_subgroups()     return len(set(subG.cardinality() for subG in subgroups)) # Peter Luschny, Apr 21 2016 CROSSREFS Sequence in context: A005282 A046185 A259964 * A349061 A241691 A164429 Adjacent sequences:  A218910 A218911 A218912 * A218914 A218915 A218916 KEYWORD nonn,more AUTHOR Liam Naughton, Nov 09 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 20 23:05 EDT 2022. Contains 353886 sequences. (Running on oeis4.)