login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A241691
Number of Carlitz compositions of n with exactly one descent.
2
1, 2, 4, 8, 13, 21, 33, 50, 73, 106, 150, 209, 289, 393, 529, 707, 935, 1227, 1601, 2072, 2666, 3413, 4344, 5501, 6937, 8707, 10883, 13554, 16815, 20787, 25617, 31465, 38532, 47056, 57302, 69596, 84320, 101907, 122875, 147833, 177471, 212608, 254201, 303335
OFFSET
3,2
COMMENTS
No two adjacent parts of a Carlitz composition are equal.
LINKS
EXAMPLE
a(3) = 1: [2,1].
a(4) = 2: [3,1], [1,2,1].
a(5) = 4: [4,1], [3,2], [2,1,2], [1,3,1].
a(6) = 8: [4,2], [5,1], [3,1,2], [1,3,2], [1,4,1], [2,3,1], [2,1,3], [1,2,1,2].
a(7) = 13: [4,3], [6,1], [5,2], [2,1,4], [4,1,2], [1,4,2], [2,3,2], [3,1,3], [1,5,1], [2,4,1], [1,2,3,1], [1,3,1,2], [1,2,1,3].
MAPLE
b:= proc(n, i) option remember; `if`(n=0, 1,
convert(series(add(`if`(i=j, 0, b(n-j, j)*
`if`(j<i, x, 1)), j=1..n), x, 2), polynom))
end:
a:= n-> coeff(b(n, 0), x, 1):
seq(a(n), n=3..50);
CROSSREFS
Column k=1 of A241701.
Sequence in context: A259964 A218913 A349061 * A164429 A073336 A164420
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Apr 27 2014
STATUS
approved