login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A227158 Second-order term in the asymptotic expansion of B(x), the count of numbers up to x which are the sum of two squares. 4
5, 8, 1, 9, 4, 8, 6, 5, 9, 3, 1, 7, 2, 9, 0, 7, 9, 7, 9, 2, 8, 1, 4, 9, 8, 8, 4, 5, 0, 2, 3, 6, 7, 5, 5, 9, 3, 0, 4, 8, 3, 2, 8, 7, 3, 0, 7, 1, 7, 7, 2, 5, 2, 1, 8, 2, 3, 4, 2, 1, 2, 9, 9, 2, 6, 5, 2, 5, 1, 2, 3, 1, 5, 5, 5, 9, 5, 0, 3, 4, 6, 1, 4, 3, 0, 1, 2, 3, 6, 1, 3, 1, 4, 9, 2, 4, 1, 3, 4, 9, 6 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

K = A064533, the Landau-Ramanujan constant, is the first-order term. This constant is c = lim (B(x)*sqrt(log x)/x - 1)log x, where the limit is taken as x increases without bound.

REFERENCES

Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.3 Landau-Ramanujan constants, p. 99.

LINKS

Table of n, a(n) for n=0..100.

D. Shanks, The second-order term in the asymptotic expansion of B(x), Mathematics of Computation 18 (1964), pp. 75-86.

Eric Weisstein's World of Mathematics, Landau-Ramanujan Constant

EXAMPLE

0.58194865931729079777136487517474826173838317235153574360562....

MATHEMATICA

digits = 101; m0 = 5; dm = 5; beta[x_] := 1/4^x*(Zeta[x, 1/4] - Zeta[x, 3/4]); L = Pi^(3/2)/Gamma[3/4]^2*2^(1/2)/2; Clear[f]; f[m_] := f[m] = 1/2*(1 - Log[Pi*E^EulerGamma/(2*L)]) - 1/4*NSum[ Zeta'[2^k]/Zeta[2^k] - beta'[2^k]/beta[2^k] + Log[2]/(2^(2^k) - 1), {k, 1, m}, WorkingPrecision -> digits + 10] ; f[m0]; f[m = m0 + dm]; While[RealDigits[f[m], 10, digits] != RealDigits[f[m - dm], 10, digits], m = m + dm]; RealDigits[f[m], 10, digits] // First (* Jean-François Alcover, May 27 2014 *)

PROG

(PARI) L(s)=sumalt(k=0, (-1)^k/(2*k+1)^s)

LL(s)=L'(s)/L(s)

ZZ(s)=zeta'(s)/zeta(s)

sm(x)=my(s); forprime(q=2, x, if(q%4==3, s+=log(q)/(q^8-1))); s+1/49/x^7+log(x)/7/x^7

1/2+log(2)/4-Euler/4-LL(1)/4-ZZ(2)/4+LL(2)/4-log(2)/12-ZZ(4)/4+LL(4)/4-log(2)/60+sm(1e5)/2

CROSSREFS

Cf. A064533, A001481.

Sequence in context: A171709 A093157 A122998 * A098881 A185393 A073333

Adjacent sequences:  A227155 A227156 A227157 * A227159 A227160 A227161

KEYWORD

nonn,cons

AUTHOR

Charles R Greathouse IV, Jul 03 2013

EXTENSIONS

Corrected and extended by Jean-François Alcover, Mar 19 2014 and again May 27 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 25 05:07 EST 2020. Contains 338617 sequences. (Running on oeis4.)