OFFSET
0,2
COMMENTS
Also number of binary words with 3 1's and at most n 0's that do not contain the substring 101. a(2) = 8: 111, 0111, 1110, 00111, 10011, 11001, 11100, 01110. - Alois P. Heinz, Jul 18 2013
LINKS
R. H. Hardin, Table of n, a(n) for n = 0..210
FORMULA
Empirical: a(n) = (1/24)*n^4 + (1/12)*n^3 + (23/24)*n^2 + (11/12)*n + 1.
G.f.: -(1-x+x^2)^2/(x-1)^5. - Alois P. Heinz, Jul 18 2013
Binomial transform of (1 + 2x + 3x^2 + 2x^3 + x^4), i.e., of (1 + x + x^2)^2. - Gary W. Adamson, Jan 23 2017
EXAMPLE
Some solutions for n=4:
..1..0....1..1....1..1....0..0....1..0....1..0....1..0....1..1....1..1....1..1
..0..0....1..1....1..1....0..0....0..0....1..0....1..0....1..1....1..0....1..0
..0..1....1..1....1..0....0..0....0..1....1..0....1..0....1..0....0..0....1..0
..0..0....1..0....0..0....0..1....0..1....1..0....0..0....0..1....0..0....0..0
CROSSREFS
KEYWORD
nonn
AUTHOR
R. H. Hardin, Jul 03 2013
EXTENSIONS
a(0) = 1 added by Alois P. Heinz, Jul 18 2013
STATUS
approved