login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A227162
Number of n X 3 0,1 arrays indicating 2 X 2 subblocks of some larger (n+1) X 4 binary array having a sum of one or less, with rows and columns of the latter in lexicographically nondecreasing order.
1
4, 18, 62, 193, 558, 1507, 3828, 9149, 20609, 43918, 88960, 172130, 319637, 572050, 990413, 1664308, 2722302, 4345275, 6783191, 10375943, 15578976, 22994469, 33408938, 47838207, 67580783, 94280764, 130001506, 177311376, 239383023
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = (1/90720)*n^9 + (1/8064)*n^8 + (17/30240)*n^7 + (13/960)*n^6 - (131/4320)*n^5 + (181/384)*n^4 - (146161/90720)*n^3 + (171511/10080)*n^2 - (25129/504)*n + 58 for n>3.
Conjectures from Colin Barker, Sep 07 2018: (Start)
G.f.: x*(4 - 22*x + 62*x^2 - 97*x^3 + 98*x^4 - 56*x^5 + 32*x^6 - 70*x^7 + 123*x^8 - 113*x^9 + 55*x^10 - 13*x^11 + x^12) / (1 - x)^10.
a(n) = 10*a(n-1) - 45*a(n-2) + 120*a(n-3) - 210*a(n-4) + 252*a(n-5) - 210*a(n-6) + 120*a(n-7) - 45*a(n-8) + 10*a(n-9) - a(n-10) for n>13.
(End)
EXAMPLE
Some solutions for n=4:
..1..1..1....1..1..1....1..0..0....1..0..0....1..0..0....0..0..0....0..0..0
..1..1..0....1..1..1....0..0..1....0..0..1....0..0..0....0..1..1....0..1..1
..1..1..0....1..1..1....0..0..1....0..0..0....0..0..1....0..1..1....0..1..0
..1..0..0....1..1..0....0..0..0....0..0..0....0..0..1....0..1..0....0..0..1
CROSSREFS
Column 3 of A227165.
Sequence in context: A192069 A073373 A292465 * A057414 A165910 A212766
KEYWORD
nonn
AUTHOR
R. H. Hardin, Jul 03 2013
STATUS
approved