login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A227159 Triangle read by rows: number of 321-avoiding ordered set partitions of [n] into k blocks, n>=1, 1<=k<=n. 0
1, 1, 2, 1, 6, 5, 1, 14, 27, 14, 1, 30, 99, 112, 42, 1, 62, 307, 564, 450, 132, 1, 126, 867, 2284, 2895, 1782, 429, 1, 254, 2307, 8124, 14485, 13992, 7007, 1430, 1, 510, 5891, 26492, 62085, 83446, 65065, 27456, 4862, 1, 1022, 14595, 81148, 239269, 418578, 450905, 294632, 107406, 16796 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,3

LINKS

Table of n, a(n) for n=1..55.

Anisse Kasraoui, Pattern avoidance in ordered set partitions and words, arXiv:1307.0495 [math.CO], 2013.

EXAMPLE

Triangle starts

1

1 2

1 6 5

1 14 27 14

1 30 99 112 42

1 62 307 564 450 132

1 126 867 2284 2895 1782 429

1 254 2307 8124 14485 13992 7007 1430

1 510 5891 26492 62085 83446 65065 27456 4862

1 1022 14595 81148 239269 418578 450905 294632 107406 16796

MATHEMATICA

T[n_, k_] := (-1)^(k-1) k + Sum[(-1)^(k-j) Binomial[k, j+2] 2^(n-2j) Sum[(2 j-2i+1)/(j+1) Binomial[2i, i] Binomial[2(j-i), j-i] Binomial[n+2i, 2i], {i, 0, j}], {j, 0, k-2}];

Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-Fran├žois Alcover, Jul 23 2018, from Kasraoui theorem 3.5 *)

CROSSREFS

Sequence in context: A108767 A046817 A193817 * A294439 A008970 A055896

Adjacent sequences:  A227156 A227157 A227158 * A227160 A227161 A227162

KEYWORD

nonn,tabl

AUTHOR

Joerg Arndt, Jul 03 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 17 00:08 EST 2019. Contains 329209 sequences. (Running on oeis4.)