login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A227159
Triangle read by rows: number of 321-avoiding ordered set partitions of [n] into k blocks, n>=1, 1<=k<=n.
0
1, 1, 2, 1, 6, 5, 1, 14, 27, 14, 1, 30, 99, 112, 42, 1, 62, 307, 564, 450, 132, 1, 126, 867, 2284, 2895, 1782, 429, 1, 254, 2307, 8124, 14485, 13992, 7007, 1430, 1, 510, 5891, 26492, 62085, 83446, 65065, 27456, 4862, 1, 1022, 14595, 81148, 239269, 418578, 450905, 294632, 107406, 16796
OFFSET
1,3
LINKS
EXAMPLE
Triangle starts
1
1 2
1 6 5
1 14 27 14
1 30 99 112 42
1 62 307 564 450 132
1 126 867 2284 2895 1782 429
1 254 2307 8124 14485 13992 7007 1430
1 510 5891 26492 62085 83446 65065 27456 4862
1 1022 14595 81148 239269 418578 450905 294632 107406 16796
MATHEMATICA
T[n_, k_] := (-1)^(k-1) k + Sum[(-1)^(k-j) Binomial[k, j+2] 2^(n-2j) Sum[(2 j-2i+1)/(j+1) Binomial[2i, i] Binomial[2(j-i), j-i] Binomial[n+2i, 2i], {i, 0, j}], {j, 0, k-2}];
Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jul 23 2018, from Kasraoui theorem 3.5 *)
CROSSREFS
Sequence in context: A108767 A046817 A193817 * A294439 A008970 A055896
KEYWORD
nonn,tabl
AUTHOR
Joerg Arndt, Jul 03 2013
STATUS
approved