login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A193817
Mirror of the triangle A193816.
2
1, 2, 1, 6, 5, 1, 14, 17, 7, 1, 30, 49, 31, 9, 1, 62, 129, 111, 49, 11, 1, 126, 321, 351, 209, 71, 13, 1, 254, 769, 1023, 769, 351, 97, 15, 1, 510, 1793, 2815, 2561, 1471, 545, 127, 17, 1, 1022, 4097, 7423, 7937, 5503, 2561, 799, 161, 19, 1, 2046, 9217, 18943
OFFSET
0,2
COMMENTS
A193817 is obtained by reversing the rows of the triangle A193816.
Triangle T(n,k), read by rows, given by (2,1,-2,2,0,0,0,0,0,0,0,...) DELTA (1,0,-1,1,0,0,0,0,0,0,...) where DELTA is the operator defined by A084938. - Philippe Deléham, Oct 05 2011
FORMULA
Write w(n,k) for the triangle at A193816. The triangle at A193817 is then given by w(n,n-k).
T(n,k) = 3*T(n-1,k) + T(n-1,k-1) - 2*T(n-2,k) - T(n-2,k-1), T(0,0)=1, T(1,0)=2, T(1,1)=1, T(2,0)=6, T(2,1)=5, T(2,2)=1, T(n,k)=0 if k < 0 or if k > n. - Philippe Deléham, Dec 15 2013
G.f.: (1-x+2*x^2+x^2*y)/((x-1)*(-1+2*x+x*y)). - R. J. Mathar, Aug 12 2015
EXAMPLE
First six rows:
1;
2, 1;
6, 5, 1;
14, 17, 7, 1;
30, 49, 31, 9, 1;
62, 129, 111, 49, 11, 1;
MATHEMATICA
z = 10; c = 1; d = 2;
p[0, x_] := 1
p[n_, x_] := x*p[n - 1, x] + 1; p[n_, 0] := p[n, x] /. x -> 0;
q[n_, x_] := (c*x + d)^n
t[n_, k_] := Coefficient[p[n, x], x^k]; t[n_, 0] := p[n, x] /. x -> 0;
w[n_, x_] := Sum[t[n, k]*q[n + 1 - k, x], {k, 0, n}]; w[-1, x_] := 1
g[n_] := CoefficientList[w[n, x], {x}]
TableForm[Table[Reverse[g[n]], {n, -1, z}]]
Flatten[Table[Reverse[g[n]], {n, -1, z}]] (* A193816 *)
TableForm[Table[g[n], {n, -1, z}]]
Flatten[Table[g[n], {n, -1, z}]] (* A193817 *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Aug 06 2011
STATUS
approved