login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A193816
Triangular array: the fusion of polynomial sequences P and Q given by p(n,x) = x^n + x^(n-1) + ... + x+1 and q(n,x) = (x+2)^n.
2
1, 1, 2, 1, 5, 6, 1, 7, 17, 14, 1, 9, 31, 49, 30, 1, 11, 49, 111, 129, 62, 1, 13, 71, 209, 351, 321, 126, 1, 15, 97, 351, 769, 1023, 769, 254, 1, 17, 127, 545, 1471, 2561, 2815, 1793, 510, 1, 19, 161, 799, 2561, 5503, 7937, 7423, 4097, 1022, 1, 21, 199, 1121
OFFSET
0,3
COMMENTS
See A193722 for the definition of fusion of two sequences of polynomials or triangular arrays.
Triangle T(n,k), read by rows, given by (1,0,-1,1,0,0,0,0,0,0,0,...) DELTA (2,1,-2,2,0,0,0,0,0,0,0,...) where DELTA is the operator defined in A084938. - Philippe Deléham, Oct 05 2011
FORMULA
T(n,k) = T(n-1,k) + 3*T(n-1,k-1) - T(n-2,k-1) - 2*T(n-2,k-2), T(0,0)=1, T(1,0)=1, T(1,1)=2, T(2,0)=1, T(2,1)=5, T(2,2)=6, T(n,k)=0 if k < 0 or if k > n. - Philippe Deléham, Dec 15 2013
G.f.: (1-x*y+x^2*y+2*x^2*y^2)/((-1+x+2*x*y)*(x*y-1)). - R. J. Mathar, Aug 12 2015
EXAMPLE
First six rows:
1;
1, 2;
1, 5, 6;
1, 7, 17, 14;
1, 9, 31, 49, 30;
1, 11, 49, 111, 129, 62;
MATHEMATICA
z = 10; c = 1; d = 2;
p[0, x_] := 1
p[n_, x_] := x*p[n - 1, x] + 1; p[n_, 0] := p[n, x] /. x -> 0;
q[n_, x_] := (c*x + d)^n
t[n_, k_] := Coefficient[p[n, x], x^k]; t[n_, 0] := p[n, x] /. x -> 0;
w[n_, x_] := Sum[t[n, k]*q[n + 1 - k, x], {k, 0, n}]; w[-1, x_] := 1
g[n_] := CoefficientList[w[n, x], {x}]
TableForm[Table[Reverse[g[n]], {n, -1, z}]]
Flatten[Table[Reverse[g[n]], {n, -1, z}]] (* A193816 *)
TableForm[Table[g[n], {n, -1, z}]]
Flatten[Table[g[n], {n, -1, z}]] (* A193817 *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Aug 06 2011
STATUS
approved