Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #18 Jan 26 2020 01:01:29
%S 1,1,2,1,5,6,1,7,17,14,1,9,31,49,30,1,11,49,111,129,62,1,13,71,209,
%T 351,321,126,1,15,97,351,769,1023,769,254,1,17,127,545,1471,2561,2815,
%U 1793,510,1,19,161,799,2561,5503,7937,7423,4097,1022,1,21,199,1121
%N Triangular array: the fusion of polynomial sequences P and Q given by p(n,x) = x^n + x^(n-1) + ... + x+1 and q(n,x) = (x+2)^n.
%C See A193722 for the definition of fusion of two sequences of polynomials or triangular arrays.
%C Triangle T(n,k), read by rows, given by (1,0,-1,1,0,0,0,0,0,0,0,...) DELTA (2,1,-2,2,0,0,0,0,0,0,0,...) where DELTA is the operator defined in A084938. - _Philippe Deléham_, Oct 05 2011
%F T(n,k) = T(n-1,k) + 3*T(n-1,k-1) - T(n-2,k-1) - 2*T(n-2,k-2), T(0,0)=1, T(1,0)=1, T(1,1)=2, T(2,0)=1, T(2,1)=5, T(2,2)=6, T(n,k)=0 if k < 0 or if k > n. - _Philippe Deléham_, Dec 15 2013
%F G.f.: (1-x*y+x^2*y+2*x^2*y^2)/((-1+x+2*x*y)*(x*y-1)). - _R. J. Mathar_, Aug 12 2015
%e First six rows:
%e 1;
%e 1, 2;
%e 1, 5, 6;
%e 1, 7, 17, 14;
%e 1, 9, 31, 49, 30;
%e 1, 11, 49, 111, 129, 62;
%t z = 10; c = 1; d = 2;
%t p[0, x_] := 1
%t p[n_, x_] := x*p[n - 1, x] + 1; p[n_, 0] := p[n, x] /. x -> 0;
%t q[n_, x_] := (c*x + d)^n
%t t[n_, k_] := Coefficient[p[n, x], x^k]; t[n_, 0] := p[n, x] /. x -> 0;
%t w[n_, x_] := Sum[t[n, k]*q[n + 1 - k, x], {k, 0, n}]; w[-1, x_] := 1
%t g[n_] := CoefficientList[w[n, x], {x}]
%t TableForm[Table[Reverse[g[n]], {n, -1, z}]]
%t Flatten[Table[Reverse[g[n]], {n, -1, z}]] (* A193816 *)
%t TableForm[Table[g[n], {n, -1, z}]]
%t Flatten[Table[g[n], {n, -1, z}]] (* A193817 *)
%Y Cf. A084938, A193722, A193817.
%K nonn,tabl
%O 0,3
%A _Clark Kimberling_, Aug 06 2011