The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A064533 Decimal expansion of Landau-Ramanujan constant. 41
 7, 6, 4, 2, 2, 3, 6, 5, 3, 5, 8, 9, 2, 2, 0, 6, 6, 2, 9, 9, 0, 6, 9, 8, 7, 3, 1, 2, 5, 0, 0, 9, 2, 3, 2, 8, 1, 1, 6, 7, 9, 0, 5, 4, 1, 3, 9, 3, 4, 0, 9, 5, 1, 4, 7, 2, 1, 6, 8, 6, 6, 7, 3, 7, 4, 9, 6, 1, 4, 6, 4, 1, 6, 5, 8, 7, 3, 2, 8, 5, 8, 8, 3, 8, 4, 0, 1, 5, 0, 5, 0, 1, 3, 1, 3, 1, 2, 3, 3, 7, 2, 1, 9, 3, 7, 2, 6, 9, 1, 2, 0, 7, 9, 2, 5, 9, 2, 6, 3, 4, 1, 8, 7, 4, 2, 0, 6, 4, 6, 7, 8, 0, 8, 4, 3, 2, 3, 0, 6, 3, 3, 1, 5, 4, 3, 4, 6, 2, 9, 3, 8, 0, 5, 3, 1, 6, 0, 5, 1, 7, 1, 1, 6, 9, 6, 3, 6, 1, 7, 7, 5, 0, 8, 8, 1, 9, 9, 6, 1, 2, 4, 3, 8, 2, 4, 9, 9, 4, 2, 7, 7, 6, 8, 3, 4, 6, 9, 0, 5, 1, 6, 2, 3, 5, 1, 3, 9, 2, 1, 8, 7, 1, 9, 6, 2, 0, 5, 6, 9, 0, 5, 3, 2, 9, 5, 6, 4, 4, 6, 7, 0, 4 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS Named after the German mathematician Edmund Georg Hermann Landau (1877-1938) and the Indian mathematician Srinivasa Ramanujan (1887-1920). - Amiram Eldar, Jun 20 2021 REFERENCES Bruce C. Berndt, Ramanujan's notebook part IV, Springer-Verlag, 1994, pp. 52,60-66; MR 95e: 11028. Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 98-104. G. H. Hardy, "Ramanujan, Twelve lectures on subjects suggested by his life and work", Chelsea, 1940, pp. 60-63; MR 21 # 4881. Edmund Landau, Über die Einteilung der positiven ganzen Zahlen in vier Klassen nach der Mindestzahl der zu ihrer additiven Zusammensetzung erforderlichen Quadrate. Arch. Math. Phys., 13, 1908, pp. 305-312. LINKS David E. G. Hare, Table of n, a(n) for n = 0..125078 Steven R. Finch, Landau-Ramanujan Constant. [Broken link] Steven R. Finch, Landau-Ramanujan Constant. [From the Wayback machine] Steven R. Finch, Landau-Ramanujan Constant. [From the Wayback Machine] Steven R. Finch, On a Generalized Fermat-Wiles Equation. [Broken link] Steven R. Finch, On a Generalized Fermat-Wiles Equation. [From the Wayback Machine] Philippe Flajolet and Ilan Vardi, Zeta function expansions of some classical constants, Feb 18 1996. Etienne Fouvry, Claude Levesque and Michel Waldschmidt, Representation of integers by cyclotomic binary forms, arXiv:1712.09019 [math.NT], 2017. Xavier Gourdon and Pascal Sebah, Constants and records of computation. David E. G. Hare, 125,079 digits of the Landau-Ramanujan constant. David E. G. Hare, Landau-Ramanujan constant up to 10000 digits. Institute of Physics, Constants - Landau-Ramanujan Constant. Simon Plouffe, Landau Ramanujan constant. Daniel Shanks, The second-order term in the asymptotic expansion of B(x), Mathematics of Computation, Vol. 18, No. 85 (1964), pp. 75-86. Eric Weisstein's World of Mathematics, Ramanujan constant. Wikipedia, Landau-Ramanujan constant. Robert G. Wilson v, The first 15584 digits of the Landau-Ramanujan constant. FORMULA From Amiram Eldar, Mar 08 2024: (Start) Equals (Pi/4) * Product_{primes p == 1 (mod 4)} (1 - 1/p^2)^(1/2). Equals (1/sqrt(2)) * Product_{primes p == 3 (mod 4)} (1 - 1/p^2)^(-1/2). Equals (1/sqrt(2)) * Product_{k>=1} ((1 - 1/2^(2^k)) * zeta(2^k)/beta(2^k)), where beta is the Dirichlet beta function (Shanks, 1964). (End) EXAMPLE 0.76422365358922066299069873125009232811679054139340951472168667374... MATHEMATICA First@ RealDigits@ N[1/Sqrt@2 Product[((1 - 2^(-2^k)) 4^(2^k) Zeta[2^k]/(Zeta[2^k, 1/4] - Zeta[2^k, 3/4]))^(2^(-k - 1)), {k, 8}], 2^8] (* Robert G. Wilson v, Jul 01 2007 *) (* Victor Adamchik calculated 5100 digits of the Landau-Ramanujan constant using Mathematica (from Mathematica 4 demos): *) LandauRamanujan[n_] := With[{K = Ceiling[Log[2, n*Log[3, 10]]]}, N[Product[(((1 - 2^(-2^k))*4^2^k*Zeta[2^k])/(Zeta[2^k, 1/4] - Zeta[2^k, 3/4]))^2^(-k - 1), {k, 1, K}]/Sqrt[2], n]]; (* The code reported here is the code at https://library.wolfram.com/infocenter/Demos/120/. Looking carefully at the outputs reported there one sees that: the last 8 digits of the 500-digit output ("74259724") are not the same as those listed in the 1000-digit output ("94247095"); the same happens with the last 18 digits of the 1000-digit output ("584868265713856413") and the corresponding ones in the 5100-digit output ("852514327407923660"). - Alessandro Languasco, May 07 2021 *) CROSSREFS Cf. A125776 = Continued fraction. - Harry J. Smith, May 13 2009 Cf. A000692, A001481, A009003, A075880, A090735, A090736, A227158. Sequence in context: A175996 A248940 A134982 * A131184 A021933 A154730 Adjacent sequences: A064530 A064531 A064532 * A064534 A064535 A064536 KEYWORD cons,nonn AUTHOR N. J. A. Sloane, Oct 08 2001 EXTENSIONS More references needed! Hardy and Wright? Gruber and Lekkerkerker? More terms from Vladeta Jovovic, Oct 08 2001 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 18 18:58 EDT 2024. Contains 371781 sequences. (Running on oeis4.)