|
|
A064533
|
|
Decimal expansion of Landau-Ramanujan constant.
|
|
38
|
|
|
7, 6, 4, 2, 2, 3, 6, 5, 3, 5, 8, 9, 2, 2, 0, 6, 6, 2, 9, 9, 0, 6, 9, 8, 7, 3, 1, 2, 5, 0, 0, 9, 2, 3, 2, 8, 1, 1, 6, 7, 9, 0, 5, 4, 1, 3, 9, 3, 4, 0, 9, 5, 1, 4, 7, 2, 1, 6, 8, 6, 6, 7, 3, 7, 4, 9, 6, 1, 4, 6, 4, 1, 6, 5, 8, 7, 3, 2, 8, 5, 8, 8, 3, 8, 4, 0, 1, 5, 0, 5, 0, 1, 3, 1, 3, 1, 2, 3, 3, 7, 2, 1, 9, 3, 7, 2, 6, 9, 1, 2, 0, 7, 9, 2, 5, 9, 2, 6, 3, 4, 1, 8, 7, 4, 2, 0, 6, 4, 6, 7, 8, 0, 8, 4, 3, 2, 3, 0, 6, 3, 3, 1, 5, 4, 3, 4, 6, 2, 9, 3, 8, 0, 5, 3, 1, 6, 0, 5, 1, 7, 1, 1, 6, 9, 6, 3, 6, 1, 7, 7, 5, 0, 8, 8, 1, 9, 9, 6, 1, 2, 4, 3, 8, 2, 4, 9, 9, 4, 2, 7, 7, 6, 8, 3, 4, 6, 9, 0, 5, 1, 6, 2, 3, 5, 1, 3, 9, 2, 1, 8, 7, 1, 9, 6, 2, 0, 5, 6, 9, 0, 5, 3, 2, 9, 5, 6, 4, 4, 6, 7, 0, 4
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
COMMENTS
|
Named after the German mathematician Edmund Georg Hermann Landau (1877-1938) and the Indian mathematician Srinivasa Ramanujan (1887-1920). - Amiram Eldar, Jun 20 2021
|
|
REFERENCES
|
Bruce C. Berndt, Ramanujan's notebook part IV, Springer-Verlag, 1994, pp. 52,60-66; MR 95e: 11028.
Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 98-104.
G. H. Hardy, "Ramanujan, Twelve lectures on subjects suggested by his life and work", Chelsea, 1940, pp. 60-63; MR 21 # 4881.
Edmund Landau, Über die Einteilung der positiven ganzen Zahlen in vier Klassen nach der Mindestzahl der zu ihrer additiven Zusammensetzung erforderlichen Quadrate. Arch. Math. Phys., 13, 1908, pp. 305-312.
|
|
LINKS
|
David E. G. Hare, Table of n, a(n) for n = 0..125078
Steven R. Finch, Landau-Ramanujan Constant. [Broken link]
Steven R. Finch, Landau-Ramanujan Constant. [From the Wayback machine]
Steven R. Finch, Landau-Ramanujan Constant. [From the Wayback Machine]
Steven R. Finch, On a Generalized Fermat-Wiles Equation. [Broken link]
Steven R. Finch, On a Generalized Fermat-Wiles Equation. [From the Wayback Machine]
Philippe Flajolet and Ilan Vardi, Zeta function expansions of some classical constants, Feb 18 1996.
Etienne Fouvry, Claude Levesque and Michel Waldschmidt, Representation of integers by cyclotomic binary forms, arXiv:1712.09019 [math.NT], 2017.
Xavier Gourdon and Pascal Sebah, Constants and records of computation.
David E. G. Hare, 125,079 digits of the Landau-Ramanujan constant.
David E. G. Hare, Landau-Ramanujan constant up to 10000 digits.
Institute of Physics, Constants - Landau-Ramanujan Constant.
Simon Plouffe, Landau Ramanujan constant.
Daniel Shanks, The second-order term in the asymptotic expansion of B(x), Mathematics of Computation, Vol. 18, No. 85 (1964), pp. 75-86.
Eric Weisstein's World of Mathematics, Ramanujan constant.
Wikipedia, Landau-Ramanujan constant.
Robert G. Wilson v, The first 15584 digits of the Landau-Ramanujan constant.
|
|
EXAMPLE
|
0.76422365358922066299069873125009232811679054139340951472168667374...
|
|
MATHEMATICA
|
First@ RealDigits@ N[1/Sqrt@2 Product[((1 - 2^(-2^k)) 4^(2^k) Zeta[2^k]/(Zeta[2^k, 1/4] - Zeta[2^k, 3/4]))^(2^(-k - 1)), {k, 8}], 2^8] (* Robert G. Wilson v, Jul 01 2007 *)
(* Victor Adamchik calculated 5100 digits of the Landau-Ramanujan constant using Mathematica (from Mathematica 4 demos): *) LandauRamanujan[n_] := With[{K = Ceiling[Log[2, n*Log[3, 10]]]}, N[Product[(((1 - 2^(-2^k))*4^2^k*Zeta[2^k])/(Zeta[2^k, 1/4] - Zeta[2^k, 3/4]))^2^(-k - 1), {k, 1, K}]/Sqrt[2], n]];
(* The code reported here is the code at https://library.wolfram.com/infocenter/Demos/120/. Looking carefully at the outputs reported there one sees that: the last 8 digits of the 500-digit output ("74259724") are not the same as those listed in the 1000-digit output ("94247095"); the same happens with the last 18 digits of the 1000-digit output ("584868265713856413") and the corresponding ones in the 5100-digit output ("852514327407923660"). - Alessandro Languasco, May 07 2021 *)
|
|
CROSSREFS
|
Cf. A125776 = Continued fraction. - Harry J. Smith, May 13 2009
Cf. A000692, A001481, A009003, A075880, A090735, A090736, A227158.
Sequence in context: A175996 A248940 A134982 * A131184 A021933 A154730
Adjacent sequences: A064530 A064531 A064532 * A064534 A064535 A064536
|
|
KEYWORD
|
cons,nonn
|
|
AUTHOR
|
N. J. A. Sloane, Oct 08 2001
|
|
EXTENSIONS
|
More references needed! Hardy and Wright? Gruber and Lekkerkerker?
More terms from Vladeta Jovovic, Oct 08 2001
|
|
STATUS
|
approved
|
|
|
|