The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A064535 a(n) = (2^prime(n)-2)/prime(n); a(0) = 0 by convention. 12
0, 1, 2, 6, 18, 186, 630, 7710, 27594, 364722, 18512790, 69273666, 3714566310, 53634713550, 204560302842, 2994414645858, 169947155749830, 9770521225481754, 37800705069076950, 2202596307308603178, 33256101992039755026, 129379903640264252430 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
As a corollary to Fermat's little theorem, (2^p - 2)/p is always an integer for p prime. - Alonso del Arte, May 04 2013
LINKS
FORMULA
a(n) = A001037(prime(n)) for n >= 1. - Hilko Koning, Sep 10 2018
a(n) = 2*A007663(n) for n > 1. - Jeppe Stig Nielsen, May 16 2021
EXAMPLE
a(3) = 6, because prime(3) = 5, and (2^5 - 2)/5 = 30/5 = 6.
a(4) = 18, because prime(4) = 7, and (2^7 - 2)/7 = 126/7 = 18.
MAPLE
A064535 := proc(n) ( 2^ithprime(n) - 2 )/ithprime(n); end;
MATHEMATICA
Table[(2^Prime[n] - 2)/Prime[n], {n, 50}] (* Alonso del Arte, Apr 28 2013 *)
PROG
(PARI) { for (n=0, 100, if (n, a=(2^prime(n) - 2)/prime(n), a=0); write("b064535.txt", n, " ", a) ) } \\ Harry J. Smith, Sep 17 2009
(Magma) [0] cat [(2^NthPrime(n)-2)/NthPrime(n): n in [1..25]]; // Vincenzo Librandi, Sep 14 2018
CROSSREFS
Cf. A007663, A056743, A225101 (superset).
Sequence in context: A323104 A208456 A056743 * A240643 A262971 A253380
KEYWORD
nonn
AUTHOR
Shane Findley, Oct 09 2001
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 15 13:08 EDT 2024. Contains 373407 sequences. (Running on oeis4.)