The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A064535 a(n) = (2^prime(n)-2)/prime(n); a(0) = 0 by convention. 12
 0, 1, 2, 6, 18, 186, 630, 7710, 27594, 364722, 18512790, 69273666, 3714566310, 53634713550, 204560302842, 2994414645858, 169947155749830, 9770521225481754, 37800705069076950, 2202596307308603178, 33256101992039755026, 129379903640264252430 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS As a corollary to Fermat's little theorem, (2^p - 2)/p is always an integer for p prime. - Alonso del Arte, May 04 2013 LINKS Harry J. Smith, Table of n, a(n) for n = 0..100 FORMULA a(n) = A001037(prime(n)) for n >= 1. - Hilko Koning, Sep 10 2018 a(n) = 2*A007663(n) for n > 1. - Jeppe Stig Nielsen, May 16 2021 EXAMPLE a(3) = 6, because prime(3) = 5, and (2^5 - 2)/5 = 30/5 = 6. a(4) = 18, because prime(4) = 7, and (2^7 - 2)/7 = 126/7 = 18. MAPLE A064535 := proc(n) ( 2^ithprime(n) - 2 )/ithprime(n); end; MATHEMATICA Table[(2^Prime[n] - 2)/Prime[n], {n, 50}] (* Alonso del Arte, Apr 28 2013 *) PROG (PARI) { for (n=0, 100, if (n, a=(2^prime(n) - 2)/prime(n), a=0); write("b064535.txt", n, " ", a) ) } \\ Harry J. Smith, Sep 17 2009 (Magma) [0] cat [(2^NthPrime(n)-2)/NthPrime(n): n in [1..25]]; // Vincenzo Librandi, Sep 14 2018 CROSSREFS Cf. A007663, A056743, A225101 (superset). Sequence in context: A323104 A208456 A056743 * A240643 A262971 A253380 Adjacent sequences: A064532 A064533 A064534 * A064536 A064537 A064538 KEYWORD nonn AUTHOR Shane Findley, Oct 09 2001 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 15 13:08 EDT 2024. Contains 373407 sequences. (Running on oeis4.)