login
A227155
Number of composites removed in each step of the Sieve of Eratosthenes for 10^7.
4
4999999, 1666666, 666666, 380952, 207791, 159839, 112829, 95016, 74356, 56405, 50949, 41317, 36293, 33780, 30205, 26228, 23123, 21975, 19655, 18249, 17467, 15871, 14876, 13668, 12358, 11710, 11344, 10779, 10451, 9955, 8748, 8398, 7956, 7768, 7181, 7034, 6724
OFFSET
1,1
COMMENTS
The number of composites <= 10^7 for which the n-th prime is the least prime factor.
The number of multiples of the n-th prime <= 10^7 that do not have any prime < the n-th prime as a factor.
The greatest n for which the n-th prime is a multiple <= 10^7 without a prime factor < n-th prime = primepi(sqrt(10^7)).
LINKS
FORMULA
a(1) = 10^7 \ 2 - 1.
a(2) = 10^7 \ 3 - 10^7 \ 6 - 1.
a(3) = 10^7 \ 5 - 10^7 \ 10 - 10^7 \ 15 + 10^7 \ 30 - 1.
EXAMPLE
For n = 2, prime(n) = 3, a(n) = 1666666: 3 divides 10^7 3333333 times.
6 is the common multiple of 2 and 3, thus 10^7 \ 6 multiples of 3 (1666666) have already been eliminated by a(1).
3333333 less 1666666 = 1666667, less 1 because 3 itself is not eliminated.
Thus a(2) = 3333333 - 1666666 - 1 = 1666666.
KEYWORD
nonn,fini
AUTHOR
Eric F. O'Brien, Jul 02 2013
STATUS
approved