login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A145540
Number of numbers removed in each step of Eratosthenes's sieve for 10^4.
23
4999, 1666, 666, 380, 207, 159, 110, 94, 76, 59, 56, 46, 41, 37, 33, 27, 23, 21, 17, 15, 12, 9, 8, 6, 3
OFFSET
1,1
COMMENTS
Number of steps in Eratosthenes's sieve for 10^n is A122121(n).
Number of primes less than 10^4 is 10^4 - (sum all of numbers in this sequence) - 1 = A006880(4).
MAPLE
A145540:=Array([seq(0, j=1..25)]): lim:=10^4: p:=Array([seq(ithprime(j), j=1..25)]): for n from 4 to lim do if(isprime(n))then n:=n+1: fi: for k from 1 to 25 do if(n mod p[k] = 0)then A145540[k]:=A145540[k]+1: break: fi: od: od: seq(A145540[j], j=1..25); # Nathaniel Johnston, Jun 23 2011
MATHEMATICA
f3[k_Integer?Positive, i_Integer?Positive] := Module[{f, m, r, p}, p = Transpose[{r = Range[2, i], Prime[r]}]; f[x_] := Catch[Fold[If[Mod[x, #2[[2]]] == 0, Throw[m[ #2[[1]]] = m[ #2[[1]]] + 1], #1] &, If[Mod[x, 2] == 0, Throw[m[1] = m[1] + 1]], p]]; Table[m[n] = -1, {n, i}]; f /@ Range[k]; Table[m[n], {n, i}]]; nn = 4; kk = PrimePi[Sqrt[10^nn]]; t3 = f3[10^nn, kk] (* Bob Hanlon (hanlonr(AT)cox.net) *)
CROSSREFS
KEYWORD
fini,full,nonn
AUTHOR
Artur Jasinski with assistance from Bob Hanlon (hanlonr(AT)cox.net), Oct 14 2008
STATUS
approved