OFFSET
0,3
FORMULA
a(n) = (1/(n+1)!) * Sum_{k=0..n} 2^(n-k) * (n+k)! * Stirling2(n,k).
a(n) ~ 2^(2*n+1) * LambertW(3*exp(1))^(n+1) * n^(n-1) / (sqrt(1 + LambertW(3*exp(1))) * 3^(n+1) * exp(n) * (LambertW(3*exp(1)) - 1)^(2*n+1)). - Vaclav Kotesovec, Mar 06 2024
PROG
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(serreverse(x*(3-exp(2*x))/2)/x))
(PARI) a(n) = sum(k=0, n, 2^(n-k)*(n+k)!*stirling(n, k, 2))/(n+1)!;
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Mar 06 2024
STATUS
approved