login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A370894
Expansion of e.g.f. (1/x) * Series_Reversion( x*(3 - exp(2*x))/2 ).
2
1, 1, 6, 64, 1016, 21576, 575680, 18525088, 698625408, 30229271680, 1476535180544, 80371762466304, 4824793854177280, 316685993746640896, 22563822118152880128, 1734427247284290015232, 143072322233503079038976, 12606854482934004152303616
OFFSET
0,3
FORMULA
a(n) = (1/(n+1)!) * Sum_{k=0..n} 2^(n-k) * (n+k)! * Stirling2(n,k).
a(n) ~ 2^(2*n+1) * LambertW(3*exp(1))^(n+1) * n^(n-1) / (sqrt(1 + LambertW(3*exp(1))) * 3^(n+1) * exp(n) * (LambertW(3*exp(1)) - 1)^(2*n+1)). - Vaclav Kotesovec, Mar 06 2024
PROG
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(serreverse(x*(3-exp(2*x))/2)/x))
(PARI) a(n) = sum(k=0, n, 2^(n-k)*(n+k)!*stirling(n, k, 2))/(n+1)!;
CROSSREFS
Cf. A258922.
Sequence in context: A141008 A336114 A354494 * A258425 A365054 A249592
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Mar 06 2024
STATUS
approved