login
A336116
Primes of the form q*2^h - 1, where q is a Fermat prime.
2
2, 5, 11, 19, 23, 47, 67, 79, 191, 271, 383, 1087, 1279, 4111, 5119, 6143, 16447, 20479, 81919, 262147, 263167, 786431, 1114111, 1310719, 16842751, 17825791, 1073758207, 4295032831, 4311744511, 17180131327, 21474836479, 51539607551, 824633720831, 1168231104511
OFFSET
1,1
FORMULA
For all n >= 1, A335885(a(n)) <= 2.
MATHEMATICA
NestList[NestWhile[NextPrime, #, ! (PrimeQ[#2] && With[{p = NestWhile[BitShiftRight, #2 + 1, EvenQ] - 1}, BitAnd[p, p - 1] == 0 && With[{b = BitLength[p]}, BitAnd[b - 1, b - 2] == 0]]) &, 2] &, 2, 25] (* Jan Mangaldan, Jul 14 2020 *)
PROG
(PARI)
A000265(n) = (n>>valuation(n, 2));
isA019434(n) = ((n>2)&&isprime(n)&&!bitand(n-2, n-1));
isA336116(n) = (isprime(n)&&isA019434(A000265(1+n)));
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jul 09 2020
EXTENSIONS
More terms from Jinyuan Wang, Jul 11 2020
STATUS
approved