OFFSET
1,1
COMMENTS
Number of terms < 10^k: 2, 12, 79, 523, 4124, 32678, 267850, etc. Compare these to A006880. - Robert G. Wilson v, Feb 09 2017
Primes p such that A006530(A007504(i)) <= p, where i is the index of p in A000040. - Felix Fröhlich, Feb 12 2017
LINKS
Robert G. Wilson v, Table of n, a(n) for n = 1..10000
EXAMPLE
5 is in the sequence for the sum of all primes <= 5 is 10, and 10 has no prime divisor > 5.
17 is not in the sequence for the corresponding sum is 58 which has a prime divisor > 17.
MATHEMATICA
p = s = 2; lst = {}; While[p < 1000, If[ FactorInteger[s][[-1, 1]] <= p, AppendTo[lst, p]]; p = NextPrime@ p; s = s + p]; lst (* Robert G. Wilson v, Feb 09 2017 *)
PROG
(PARI) isok(n) = isprime(n) && (vecmax(factor(sum(k=1, primepi(n), prime(k)))[, 1]) <= n); \\ Michel Marcus, Feb 12 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Emmanuel Vantieghem, Feb 09 2017
STATUS
approved