The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A334092 Primes p of the form of the form q*2^h + 1, where q is one of the Fermat primes; Primes p for which A329697(p) == 2. 14
 7, 11, 13, 41, 97, 137, 193, 641, 769, 12289, 40961, 163841, 557057, 786433, 167772161, 2281701377, 3221225473, 206158430209, 2748779069441, 6597069766657, 38280596832649217, 180143985094819841, 221360928884514619393, 188894659314785808547841, 193428131138340667952988161 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Primes p such that p-1 is not a power of two, but for which A171462(p-1) = (p-1-A052126(p-1)) is [a power of 2]. Primes of the form ((2^(2^k))+1)*2^h + 1, where ((2^(2^k))+1) is one of the Fermat primes, A019434, 3, 5, 17, 257, ..., . LINKS Charles R Greathouse IV, Table of n, a(n) for n = 1..53 PROG (PARI) isA334092(n) = (isprime(n)&&2==A329697(n)); (PARI) A052126(n) = if(1==n, n, n/vecmax(factor(n)[, 1])); A209229(n) = (n && !bitand(n, n-1)); isA334092(n) = (isprime(n)&&(!A209229(n-1))&&A209229(n-1-A052126(n-1))); (PARI) list(lim)=if(exponent(lim\=1)>=2^33, error("Verify composite character of more Fermat primes before checking this high")); my(v=List(), t); for(e=0, 4, t=2^2^e+1; while((t<<=1)

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 15 01:24 EDT 2021. Contains 342974 sequences. (Running on oeis4.)